ARM7啟動代碼的分析與設(shè)計
引言
本文引用地址:http://m.butianyuan.cn/article/148458.htm隨著生活水平的提高和IT技術(shù)的進步,8位處理器的處理能力已經(jīng)不能滿足嵌入式系統(tǒng)的需要了;而16位處理器在性能和成本上都沒有很大的突破。并且在8位機的開發(fā)中,大多使用匯編語言來編寫用戶程序。這使得程序的可維護性、易移植性等都受到了極大的挑戰(zhàn)。正是基于此,ARM公司適時的推出了一系列的32位嵌入式微控制器。目前廣泛使用的是ARM7和ARM9系列,ARM7TDMI內(nèi)核的ARM7處理器廣泛應(yīng)用于工業(yè)控制、儀器儀表、汽車電子、通訊、消費電子等嵌入式設(shè)備。本文主要以philips公司ARM7TDMI核的LPC2119為例來分析如何編寫ARM7的啟動代碼。
在嵌入式系統(tǒng)軟件的開發(fā)中,應(yīng)用程序通常是在嵌入式操作系統(tǒng)的開發(fā)平臺上采用C語言編寫的。然而,在ARM系統(tǒng)上電復(fù)位后,需要設(shè)置中斷向量表、初始化各模式堆棧、設(shè)置系統(tǒng)時鐘頻率等,而這些過程都是針對ARM內(nèi)部寄存器結(jié)構(gòu)的操作,用C語言編程是很難實現(xiàn)的。因此在轉(zhuǎn)到應(yīng)用程序的c/c++編寫之前,需要用ARM的匯編語言編寫啟動代碼,由啟動代碼完成系統(tǒng)初始化以及跳轉(zhuǎn)到用戶C程序。在ARM設(shè)計開發(fā)中,啟動代碼的編寫是一個極重要的過程。然而啟動代碼隨具體的目標系統(tǒng)和開發(fā)系統(tǒng)有所區(qū)別,但通常包含以下部分:
·向量表定義
·地址重映射及中斷向量表的轉(zhuǎn)移
·堆棧初始化
·設(shè)置系統(tǒng)時鐘頻率
·中斷寄存器的初始化
·進入C應(yīng)用程序
下面就結(jié)合PHILIPS的LPC2119的啟動代碼來分析與說明ARM7處理器的啟動代碼的編寫。
1.1向量表定義
ARM芯片上電或復(fù)位后,系統(tǒng)進入管理模式、ARM狀態(tài)、PC(R15)指向0x00000000地址處。中斷向量表為每一個中斷設(shè)置1個字的存儲空間,存放一條跳轉(zhuǎn)指令,通過這條指令使PC指針指向相應(yīng)的中斷服務(wù)程序入口,繼而執(zhí)行相應(yīng)的中斷處理程序。LPC2219的中斷向量表和其它基于ARM核的芯片中斷向量表較類似,只要注意LPC2219要使向量表所有數(shù)據(jù)32位累加和為零(0x00000000-0x0000001C的8個字的機器碼累加), 才能使用戶的程序脫機運行。
1.2 地址重映射及中斷向量表的轉(zhuǎn)移
ARM7處理器在復(fù)位后從地址0讀取第一條指令并執(zhí)行,因此系統(tǒng)上電后地址0必須是非易失的ROM/FLASH,這樣才能保證處理器有正確可用的指令。為了加快對中斷的處理以及實現(xiàn)在不同操作系統(tǒng)模式下對中斷的處理,這就需要重新映射中斷向量表、Bootblock和SRAM空間的一小部分。ARM具有非常靈活的存儲器地址分配特性。ARM處理器的地址重映射機制有兩種情況:
①由專門的寄存器完成重映射(Remap),只需對相應(yīng)的Remap寄存器相應(yīng)位設(shè)置即可。
②沒有專門的Remap控制寄存器需要重新改寫用于控制存儲器起始地址的塊(Bank)寄存器來實現(xiàn)Remap。在LPC2119上的重映射,可以通過存儲器映射控制器來實現(xiàn)。實現(xiàn)REMAP操作的程序?qū)崿F(xiàn)如下:
MOV R8,#0x40000000; /設(shè)置新向量表起始地址/
LDR R9,=Interrupt_Vector_Table; /讀原向量表源地址/
LDMIA R9!,(R0-R7); /復(fù)制中斷向量表及中斷處理程序的入口地址到RAM中(64字節(jié))/
STMIA R8!,(R0-R7)
LDMIA R9!,(R0-R7)
STMIA R8!,(R0-R7)
LDR R8,=MEMMAP ; /REMMAP操作/
MOV R9,#0x02
STR R9, [R8]
1.3 堆棧初始化
啟動代碼中各模式堆棧空間的設(shè)置是為中斷處理和程序跳轉(zhuǎn)時服務(wù)的。當(dāng)系統(tǒng)響應(yīng)中斷或程序跳轉(zhuǎn)時,需要將當(dāng)前處理器的狀態(tài)和部分重要參數(shù)保存在一段存儲空間中,所以對每個模式都要進行堆棧初始化工作,給每個模式的SP定義一個堆?;刂泛投褩5娜萘俊6褩5某跏蓟袃煞N方法:第一種方法是結(jié)合ADS開發(fā)套件中的分散加載文件來定義堆棧。第二種方法是最簡單也是最常用的一種就是直接進入對應(yīng)的處理器模式,為SP寄存器指定相應(yīng)的值。下面給出了用第二種方法初始化管理模式和中斷模式堆棧的程序:
MSR CPSR_c, #0xD3 ; /切換到管理模式,并初始化管理模式的堆棧/
LDR SP, Stack_Svc
MSR CPSR_c, #0xD2 ; /切換到IRQ模式,并初始化IRQ模式的堆棧/
LDR SP, Stack_Irq
…
1.4 系統(tǒng)部分時鐘初始化
時鐘是芯片各部分正常工作的基礎(chǔ),應(yīng)該在進入main()函數(shù)前設(shè)置。部分ARM7片子內(nèi)部集成有PLL(鎖相環(huán))電路,用戶可以用低頻率的晶振通過PLL電路獲得一個較高頻率的時鐘。LPC2119內(nèi)部的PLL電路接受的輸入時鐘頻率范圍為10~25MHz,輸入頻率通過一個電流控制振蕩器(CCO)倍增到范圍10~60MHz。同時為了使高速的ARM處理器與低速的外設(shè)正常通訊和降低功耗(降低外設(shè)運行速度使功耗降低),LPC2119又集成了一個額外的分頻器。PLL的激活是由PLLCON寄存器控制。PLL倍頻器和分頻器的值由PLLCFG寄存器控制。對PLLCON或PLLCFG寄存器的更改必須遵循嚴格的順序,否則所作更改是無法生效的(在連續(xù)的VPB周期內(nèi)向PLLFEED寄存器寫入0xAA、0x55,在此期間中斷必須是被禁止的。)
1.5 中斷初始化
ARM7的向量中斷控制器(Vectored Interrupt Controller)可以將中斷編程為3類:FIQ、向量IRQ、非向量IRQ。FIQ中斷請求的優(yōu)先級最高,其次是IRQ中斷請求,非向量IRQ的優(yōu)先級最低。VIC具有32個中斷請求輸入,但在LPC2219中只占用了17個中斷輸入。對于這17個中斷源的IRQ/FIQ選擇,由VICIntSelect寄存器控制,當(dāng)對應(yīng)位設(shè)置位1時,則此中斷為FIQ中斷,否則為IRQ中斷。若再將IRQ中斷設(shè)置到向量控制寄存器(VICVectCntIn)中,則此中斷為向量IRQ中斷,否則為非向量IRQ中斷。FIQ中斷是專門用來處理那些需要及時響應(yīng)的特殊事件,盡可能地只給FIQ分配一個中斷源。
1.6 進入C應(yīng)用程序
至此,系統(tǒng)各部分的初始化基本完成,可以直接從啟動代碼轉(zhuǎn)入到應(yīng)用程序的main()函數(shù)入口。從啟動代碼轉(zhuǎn)入到應(yīng)用程序的實例代碼如下:
IMPORT main
LDR R0,=main
BX R0
2、總結(jié)
一個優(yōu)秀的啟動代碼將給應(yīng)用程序的開發(fā)提供一個良好的開發(fā)平臺。本文中較詳細的討論了啟動代碼的編寫及難點。其中在堆棧初始化過程中要特別的注意兩點:
①要盡量給堆棧分配快速和高帶寬的存儲器。
②盡量避免過早將處理器切換到用戶模式,一般在系統(tǒng)初始化的最后階段才切換到用戶模式(用戶模式?jīng)]有權(quán)限通過修改CPSR來進行模式切換)。
嵌入式系統(tǒng)的迅猛發(fā)展,使啟動代碼的編寫成為嵌入式系統(tǒng)開發(fā)人員應(yīng)該具備的能力。本文有助于正在從事嵌入式ARM開發(fā)的讀者理解啟動代碼的內(nèi)涵與編寫出適合自己的啟動代碼。
評論