一種小型化雙頻天線的設(shè)計與分析
圖2 給出了所設(shè)計天線的電流分布。從圖2( a)可以看出,電波通過嵌入E 形微帶貼片的連接傳輸線引導(dǎo)和縫隙t 的耦合作用,在偶極子上產(chǎn)生了很強(qiáng)的輻射,使得微帶偶極子的帶寬增加,從而滿足IEEE 802. 11b/ g 的通信需求。從圖2( b) 可以看出,電流均勻地分布在E 形微帶貼片的兩臂上,增加了電流的分布長度,使得E 性天線有很大的帶寬,可以滿足5. 1~ 5. 825 GHz 無線通信的需求。
圖2 天線的電流分布
2 仿真結(jié)果與分析
根據(jù)以上的分析,采用E 形微帶貼片天線和微帶偶極子組合的結(jié)構(gòu),對工作在2. 4~ 2. 483 GHz和5. 1~ 5. 825 GHz的WLAN 天線進(jìn)行設(shè)計、仿真和優(yōu)化。
采用電磁仿真軟件CST 進(jìn)行建模仿真,考慮到仿真與實際工程的一致性,在建模的時候把輻射片與接地板之間的介質(zhì)板的介電常數(shù)直接設(shè)置為1 07。仿真得到的兩個諧振點的頻率為2 44 GHz和5 46 GHz。仿真結(jié)果如表1 所示。
從表1 中可以看出,天線在2 個諧振點有較高的輻射效率和增益。由于W1 和W2 是偶極子天線的寬度和偶極子天線的饋電傳輸線寬度,t 為E 形微帶貼片與偶極子微帶貼片之間的耦合縫隙,因此對W1、W2 和t 進(jìn)行優(yōu)化,不同寬度情況下的回波損耗曲線如圖3~ 圖5 所示。從圖3 上可以看出,當(dāng)調(diào)整W1 時,天線的低頻段將隨著W1 的增大,天線的頻率有所升高。從圖4 上可以看出,當(dāng)調(diào)整W2 時,偶極子天線與E 形微帶貼片之間的耦合電容和饋電傳輸線的阻抗發(fā)生了變化,使得天線的諧振點發(fā)生偏移,當(dāng)在W1= 6. 5 mm,W2= 1. 9 mm 時,天線的諧振阻抗帶寬最大,天線的諧振頻率為2. 44 GHz 和5. 46 GHz,帶寬分別為83MHz 和812MHz。
表1 天線方向參數(shù)的仿真結(jié)果
評論