交錯技術顯著提高升壓轉換效率
升壓電源常用于將低壓輸入轉換成較高電壓。不過,隨著這些電源的功率需求不斷增加,單個功率級可能變得缺乏吸引力。本文將介紹一種交錯式升壓技術,無論從分析還是從實際應用經驗上來說,該技術在效率、尺寸及成本方面均優(yōu)于單升壓轉換器 (single-boost converter)。本文對250W單相電源與交錯式升壓電源的測試結果進行了對比。盡管復雜性有所增加,不過交錯式升壓卻表現出具有卓越的性能。
本文引用地址:http://m.butianyuan.cn/article/175897.htm 前言
本文將以輸入電壓為12 V、輸出為 7 A、37 V 的噴墨打印機電磁線圈驅動器為例介紹電源結構的選擇。該電源的輸入電流超過 20 A。最初我們并不清楚單相功率級合理,還是多相功率級合理。與采用降壓穩(wěn)壓器一樣,我們可以獲得足夠高的電流,從而采用雙功率級來降低應力并進行散熱。在此情況下,我們考慮采用了單相與雙相升壓結構 (two-phase boost topology)。
表 1 說明了相應的電源需求。這個電源必須能夠承受電磁線圈啟動和關閉時出現的大電流突波,并將所需輸出電壓保持在可以接受的范圍內。另外,轉換效率對于最小化功率耗損和維持正常溫升同樣至關重要。37V和
7A 代表超過 250W的負載功率。就算轉換效率達到 91%,電源仍然會浪費 25W 的功率,因此需要安裝多個散熱片。此外,盡管本文并未特別說明,但是電源的大小與成本也相當重要。
圖 1 顯示了兩種電源的對比。上面的電源是采用單輸入電感的單相設計,而下面的電路是雙相設計。單相設計(上面部分)需要的 PWB 面積大約為 18 平方英寸,而交錯式設計(下面部分)需要 14 平方英寸。兩種方案之間最大的面積差異在于電感、輸出電容和散熱片。交錯式電感的最大高度低于單相設計的最大高度。
單相與雙相對比
圖 2 顯示了單相升壓轉換器和交錯式升壓轉換器的示意圖。在單相設計中,閘極電壓會施加在 FET Q1,以下拉漏極至接地電位。這樣可以在電感 L1 上施加輸入電壓,使電流上升。其間,輸出電容 C2 必須單獨提供負載所需電流。在 Q1 停止導通時,L1 為了維持電流,其兩端的電壓極性會立刻反轉。使得切換點的電壓高于輸入電壓,此時二極管 D1 進入正向偏置狀態(tài),為輸出電容 C2 充電并提供輸出負載電流。電感的伏特-微秒乘積在這兩種開關狀態(tài)下必須保持平衡,即 d / fs × Vin = (1 - d) / fs × (Vout - Vin),得出關系式Vout = Vin / (1-d)。該公式只適用于連續(xù)導通模式 (CCM),該模式的定義為電感電流始終保持正極。
圖 2 所示的交錯式升壓電路中,每個相的工作方式都與上述單相升壓相似。兩個功率級會以反相 180。的方式運行,使得輸入和輸出電容的紋波電流互相抵消。交錯式升壓設計會強迫兩個功率級共同提供輸出電流,使得電源輸出由它們平均分擔;如果工程師不采用這種設計,其中一個功率級的電流輸出就會遠大于另一個功率級,使得原有的紋波消除優(yōu)點化為烏有。
設計分析
圖 3 說明了交錯式技術提供的輸入電容紋波電流消除優(yōu)勢??梢钥闯?,兩個以 180。相位差工作的功率級可以消除一半峰/峰紋波電流。由于交錯式升壓設計的組合輸入紋波電流等于單相輸入紋波電流,因此雙相設計的單相紋波電流可以達到單相設計的兩倍。單獨交錯式功率級以與單相設計相同的頻率工作,即 100KHz。但是,由于紋波消除作用,它的有效輸入與輸出紋波變?yōu)?200KHz。因此在計算交錯式設計的電感時,適用的頻率雖和單相設計完全相同,但能允許的紋波電流卻會增加一倍,使得設計所需的電感值得以減少一半。值得注意的是:在雙相設計中,輸入電容的有效紋波電流與單相設計相同,因此這兩種設計會采用相同數量的輸入電容。紋波消除作用能夠使工程師有選擇性地減少組件,從而使設計受益。另外,如果采用的兩個電感與單相設計采用的電感值相同,輸入電容需求可以降低 50%。在升壓設計中,電感需求一般比輸入電容需求更重要。
就像輸入電容一樣,交錯式設計的輸入電容也能享受同樣的好處。圖 4 說明的是單相設計的輸出電容紋波電流。圖 3 中電流波形的均方值約為 Ipp×√(d×(1-d)),在本設計中等于 10Arm。電感的斜率可以從波形頂部看出,但是它并不顯著增加總的 RMS 電流。在 FET 導通時,該電容提供所有的輸出電流。不過,當 FET 截止時,會有相當于 Iout×d/(1-d) 或 +14A 的電流流入電容,并對它重新充電。在采用鋁電解輸出電容的情況下,電容紋波電流額定值決定所需要的電容數量。
圖 5 是交錯式升壓設計中,個別輸出電容的電流值及它們的總和。在不考慮電感斜率的情況下,相位 A 與相位 B的峰/峰電流幅值是單相設計的一半。這是因為流入輸 出電容的電流的占空比是單相設計的兩倍。在圖 5 中,綜合電流或總電流的均方根值是 5Arm,因此設計只需采用一半輸出電容,即可讓紋波電壓達到與單相設計相同的紋波電壓。
圖 6 是不同占空比下的紋波電流消除。垂直線表示工作占空比,從中可以看出在此占空比下,交錯式升壓設計的 RMS 電流等于單相位設計的一半。值得注意的是,50% 的占空比可以提供完全消除的效果。
圖 7 與圖 8 說明單相與交錯式升壓轉換器的完整設計。在單相設計中,在電壓模式下工作的 UCC38C43 驅動一對 MOSFET。由于在升壓轉換器短路情況下無法限制輸出電流,因此采用了帶有過電流保護電路的 TPS2490 熱插拔器件。在測試過程中發(fā)現,在過電流故障情況下它可以提供一種“中止”電流流動的方法。
評論