電力驅(qū)動系統(tǒng)逆變器實(shí)時(shí)仿真
雙電平三相電壓源型逆變器由6個開關(guān)管和6個與開關(guān)管反向并接的續(xù)流二極管組成,見圖1。采用實(shí)際控制器輸出的6個PWM開關(guān)邏輯信號a+,b+,c+;a-,b-,c-定義逆變器a,b,c三相正半橋開關(guān)函數(shù):
Sfap=1·×a+,SFbp=1×b+,SFcp=1×c+
和負(fù)半橋開關(guān)函數(shù):
SFan=1×a-,SFbn=1×b-,SFcn=1×c-。
則全橋開關(guān)函數(shù)為:
SFa=Sfap-SFan,SFb=SFbp-SFbn,SFc=SFcp-SFcn。
逆變器輸出端a,b,c與直流電流中點(diǎn)o之間的電壓為:uao=0.5VDC×Sfab,ubo=0.5VDC×SFb,uco=0.5VDC×SFc,
其中,VDC為直流環(huán)路電壓。由此得到線電壓為:
uab=uao-ubo,ubc=ubo-uco,uca=uco-uao
相電壓為:
uan=uao-uno,ubn=ubo-uno,ucn=uco-uno。
式中,uno=(1/3)(uao+ubo+uco)為電機(jī)三相繞組中點(diǎn)n與直流電流中點(diǎn)o之間的電壓。
正半橋a,b,c相開關(guān)器件電流為:
is1=ia×Sfap,is3=ib×SFbp,is5=ic×SFcp
負(fù)半橋a,b,c相開關(guān)器件電流為:
is4=ia×SFan,is6=ib×SFbn,is2=ic×SFcn
三相電流為:
ia=is1+is4,ib=is3+is6,ic=is5+is2
另外開關(guān)電流為:
is1=is1_s-is1_D,iS4=is4_D-is4_s
直流電流為:
iDC=is1+is3+is5
其中,is1_s,is1_D,is4_s,is4_D分別為a相正、負(fù)半橋開關(guān)管和續(xù)流二極管電流。據(jù)此,可建立逆變器的Simulink框圖模型。圖2(a)~(d)分別是逆變器模型頂層和底層的Simulink框圖。
2 實(shí)時(shí)仿真系統(tǒng)實(shí)現(xiàn)
著名的機(jī)電控制系統(tǒng)開發(fā)平臺較是基于MATLAB/Simulink/Real-Time Workshop[4~5]開發(fā)的dSPACE實(shí)時(shí)系統(tǒng)。本文的相關(guān)課題選用單板dSPACE系統(tǒng)DS1103。
圖3 宿主計(jì)算機(jī)/目標(biāo)計(jì)算機(jī)結(jié)構(gòu)
DS1103采用32位精簡指令集處理器PowerPC 604e進(jìn)行浮點(diǎn)運(yùn)算。精簡指令集處理器采用小指令集、多寄存器結(jié)構(gòu),指令執(zhí)行簡單快速;統(tǒng)一用單周期指令,克服了復(fù)雜指令集處理器周期指令有長有短,造成運(yùn)行中偶發(fā)不確定性,致使運(yùn)行失常的弊端。
DS1103板插入PC機(jī)主板的ISA擴(kuò)展槽中,由PC機(jī)提供電源,所有的實(shí)時(shí)計(jì)算都是由DS1103獨(dú)立執(zhí)行,而dSAPCE的試驗(yàn)工具軟件則并行運(yùn)行于PC主機(jī)上。宿主計(jì)算機(jī)/目標(biāo)計(jì)算機(jī)結(jié)構(gòu)如圖3所示。
Real-Time Interface(RTI)是dSPACE系統(tǒng)的實(shí)時(shí)實(shí)現(xiàn)軟件,它對實(shí)時(shí)代碼生成軟件Real-Time Workshop進(jìn)行擴(kuò)展,集成了dSPACE系統(tǒng)I/O硬件實(shí)時(shí)模型,可實(shí)現(xiàn)從Simulink模型到dSPACE系統(tǒng)實(shí)時(shí)C代碼的自動生成同,生成的實(shí)時(shí)代碼包括實(shí)時(shí)內(nèi)核和應(yīng)用代碼[6]。RTI還根據(jù)信號和參數(shù)產(chǎn)生一個變量文件,可以用dSPACE的試驗(yàn)工具軟件ControlDesk進(jìn)行訪問[7]。
在功能強(qiáng)大的實(shí)時(shí)代碼實(shí)現(xiàn)軟件RTI與界面友好的試驗(yàn)軟件ControlDesk支持下,可以很快地實(shí)現(xiàn)電力驅(qū)動系統(tǒng)快速控制原型與硬件在回路仿真測試。圖4是采上述的逆變器模型與dSPACE系統(tǒng)I/O硬件模型組建的逆變器-交流電機(jī)系統(tǒng)Simulink框圖。圖中下部是逆變器-異步電機(jī)系統(tǒng)模型,作為實(shí)時(shí)任務(wù)T1,模型具有實(shí)際控制器的硬件接口,可輸入6路實(shí)際的PWM開關(guān)信號,輸出電流、電壓等模擬信號;上部是PWM控制器模型,作為實(shí)時(shí)任務(wù)T2,模型由DSP控制器F240硬件產(chǎn)生實(shí)時(shí)PWM信號。T1與T2以異步采樣模式工作,構(gòu)成兩定時(shí)器任務(wù)系統(tǒng)。為減少采樣控制器輸出引發(fā)的可變延時(shí)造成抖動的影響,設(shè)置T1的采樣速率遠(yuǎn)高于T2的采樣速率。
3 實(shí)時(shí)仿真結(jié)果
系統(tǒng)仿真是針對某電動汽車電力驅(qū)動系統(tǒng)的,其中逆變器參數(shù)為:PWM開關(guān)頻率fPWM=1kHz,開關(guān)死區(qū)時(shí)間=7μs;直流電源與濾波參數(shù)為:電池開路電壓Ebo=288V,電源內(nèi)阻Rb=0.03Ω,濾波電容C=10000μF;異步電機(jī)參數(shù)為:132V,182A,50Hz,45kW,2900rpm;負(fù)載轉(zhuǎn)矩=50Nm;交流電源參數(shù)為:相電壓幅值=100V,頻率=50Hz。實(shí)時(shí)仿真采用Euler數(shù)值積分方法(ODE1),T1采樣周期=11μs,T2采樣周期=PWM周期=1ms。
評論