新聞中心

EEPW首頁(yè) > 電源與新能源 > 設(shè)計(jì)應(yīng)用 > 非接觸式松耦合感應(yīng)電能傳輸系統(tǒng)原理分析與設(shè)計(jì)

非接觸式松耦合感應(yīng)電能傳輸系統(tǒng)原理分析與設(shè)計(jì)

作者: 時(shí)間:2011-02-26 來(lái)源:網(wǎng)絡(luò) 收藏

摘要:給出了非接觸式松耦合感應(yīng)電能傳輸?shù)幕驹?,討論了影響系統(tǒng)電能傳輸?shù)年P(guān)鍵因素。針對(duì)不同的應(yīng)用場(chǎng)合,對(duì)原副邊進(jìn)行了補(bǔ)償設(shè)計(jì),提高電能傳輸效率和減小供電電源的電壓電流定額。并對(duì)系統(tǒng)穩(wěn)定性和可控性問(wèn)題進(jìn)行了討論。最后,基于以上分析,給出非接觸式松耦合感應(yīng)電能傳輸系統(tǒng)的一般設(shè)計(jì)方法。

本文引用地址:http://m.butianyuan.cn/article/179645.htm

關(guān)鍵詞:非接觸式;感應(yīng)電能傳輸;松耦合;系統(tǒng)設(shè)計(jì)

 

0 引言

接觸式電能傳輸通過(guò)插頭—插座等電連接器實(shí)現(xiàn)電能傳輸,在電能傳輸領(lǐng)域得到了廣泛使用。但隨著用電設(shè)備對(duì)供電品質(zhì)、安全性、可靠性等要求的不斷提高,這一傳統(tǒng)電能傳輸方法所固有的缺陷,已經(jīng)使得眾多應(yīng)用場(chǎng)合不能接受接觸式電能傳輸,迫切需要新穎的電能傳輸方法。

在礦井、石油鉆采等場(chǎng)合,采用接觸式電能傳輸,因接觸摩擦產(chǎn)生的微小電火花,就很可能引起爆炸,造成重大事故。在水下場(chǎng)合,接觸式電能傳輸存在電擊的潛在危險(xiǎn)[3]。在給移動(dòng)設(shè)備供電時(shí),一般采用滑動(dòng)接觸供電方式,這種方式在使用上存在諸如滑動(dòng)磨損、接觸火花、碳積和不安全裸露導(dǎo)體等缺陷。在給氣密儀器設(shè)備內(nèi)部供電時(shí),接觸式電能傳輸需要采用特別的連接器設(shè)計(jì),成本高且難以確保設(shè)備的氣密性。

為了解決傳統(tǒng)接觸式電能傳輸不能被眾多應(yīng)用場(chǎng)合所接受的問(wèn)題,迫切需要一種新穎的電能傳輸方法。于是,非接觸式感應(yīng)電能傳輸應(yīng)運(yùn)而生,成為當(dāng)前電能傳輸領(lǐng)域的一大研究熱點(diǎn)。本文首先給出了這種新穎電能傳輸方法的基本原理,分析了影響系統(tǒng)電能傳輸?shù)年P(guān)鍵因素;接著圍繞著提高系統(tǒng)電能傳輸效率和減小供電電源的電壓電流定額的要求,針對(duì)不同應(yīng)用場(chǎng)合,對(duì)原副邊進(jìn)行了相應(yīng)的補(bǔ)償設(shè)計(jì);對(duì)系統(tǒng)的穩(wěn)定性和可控性問(wèn)題進(jìn)行了討論。最后,基于以上分析,給出非接觸式感應(yīng)電能傳輸系統(tǒng)的一般設(shè)計(jì)方法。

1 非接觸式感應(yīng)電能傳輸系統(tǒng)

非接觸式感應(yīng)電能傳輸系統(tǒng)的典型結(jié)構(gòu)如圖1所示。系統(tǒng)由原邊電路和副邊電路兩大部分組成。原邊電路與副邊電路之間有一段空隙,通過(guò)磁場(chǎng)耦合相聯(lián)系。原邊電路把電能轉(zhuǎn)換為磁場(chǎng)發(fā)射,經(jīng)過(guò)這段氣隙后副邊電路通過(guò)接受裝置,匝鏈磁力線,接受磁場(chǎng)能量,并通過(guò)相應(yīng)的能量調(diào)節(jié)裝置,變換為應(yīng)用場(chǎng)合負(fù)載可以直接使用的電能形式,從而實(shí)現(xiàn)了非接觸式電能傳輸(文中負(fù)載用電阻表示以簡(jiǎn)化分析)。磁耦合裝置可以采用多種形式?;拘问饺鐖D2(a)原邊繞組和副邊繞組分別繞在分離的鐵芯上;圖2(b)原邊采用空芯繞組,副邊繞組繞在鐵芯上;圖2(c)原邊采用長(zhǎng)電纜,副邊繞組繞在鐵芯上。

圖1 非接觸式感應(yīng)電能傳輸系統(tǒng)典型結(jié)構(gòu)

(a)原邊繞組繞在鐵芯上(b)原邊采用 空芯繞組(c)原邊采用長(zhǎng)電纜

圖2 幾種基本的磁耦合裝置

在該非接觸式感應(yīng)電能傳輸系統(tǒng)中,原副邊電路之間較大氣隙的存在,一方面使得原副邊無(wú)電接觸,彌補(bǔ)了傳統(tǒng)接觸式電能傳輸?shù)墓逃腥毕?。另一方面較大氣隙的存在使得系統(tǒng)構(gòu)成的磁耦合關(guān)系屬于松耦合(由此,這種新穎電能傳輸技術(shù)通常也稱為松耦合感應(yīng)電能傳輸技術(shù),記為L(zhǎng)CIPT),漏磁與激磁相當(dāng),甚至比激磁高,限制了電能傳輸?shù)拇笮『蛡鬏斝省榇?,通常需要在原副邊采用補(bǔ)償網(wǎng)絡(luò)來(lái)提升電能傳輸?shù)拇笮『蛡鬏數(shù)男?,同時(shí)減小電源變換器的電壓電流應(yīng)力。而且在該系統(tǒng)的分析中,因磁耦合裝置為松耦合,因此,通常用于磁性元件分析的變壓器模型不再適用,必須采用耦合電感模型分析該系統(tǒng)中的電磁關(guān)系,同時(shí)考慮漏感和磁化電感對(duì)系統(tǒng)工作的影響。

圖3給出磁耦合裝置采用耦合電感模型的系統(tǒng)等效電路圖。原副邊磁耦合裝置的互感記為M

圖3 采用耦合電感模型的系統(tǒng)等效電路圖

設(shè)原邊用于磁場(chǎng)發(fā)射的高頻載流線圈通過(guò)角頻率為ω,電流有效值為Ip的交流電。根據(jù)耦合關(guān)系,副邊電路接受線圈中將會(huì)感應(yīng)出電壓

Voc=jωMIp (1)

相應(yīng)的,諾頓等效電路短路電流為

Isc= (2)

式中:Ls為副邊電感。

若副邊線圈的品質(zhì)因數(shù)為Qs,則在以上參數(shù)下,副邊線圈能夠獲得的最大功率為

Ps= (3)

從式(3)可以看出,提高電能傳輸?shù)拇笮】梢酝ㄟ^(guò)增大ω,Ip,MQs或減小Ls。但受應(yīng)用場(chǎng)合機(jī)械安裝和成本限制,LCIPT系統(tǒng)中,M值一般較小,而且一旦磁耦合裝置設(shè)計(jì)完成后,MLs的值就基本固定了。能夠作調(diào)整的是乘積量(ωIp2Qs)。從工程設(shè)計(jì)角度考慮,在參數(shù)選擇設(shè)計(jì)中,Qs一般不會(huì)超過(guò)10,否則系統(tǒng)工作狀態(tài)將對(duì)負(fù)載變化、元件參數(shù)變化和頻率變化非常敏感,系統(tǒng)很難穩(wěn)定。由此對(duì)傳輸電能大小調(diào)節(jié)余度最大的是乘積ωIp2。從該關(guān)系式可見(jiàn)頻率與發(fā)射電流的關(guān)系:提高頻率ω,可以減小原邊電流Ip,反之亦然。在傳輸相等電能及其它相關(guān)量不變情況下,采用高頻的LCIPT系統(tǒng)與采用低頻的LCIPT系統(tǒng)相比,所需的發(fā)射電流大大降低,電源變換器電流應(yīng)力及系統(tǒng)成本大大降低。因而LCIPT比較適合采用高頻系統(tǒng)。但限于目前功率電子技術(shù)水平和磁場(chǎng)發(fā)射相關(guān)標(biāo)準(zhǔn),系統(tǒng)頻率受到限制。根據(jù)應(yīng)用場(chǎng)合的不同,系統(tǒng)采用的頻率范圍一般在10kHz~100kHz之間。

2 系統(tǒng)補(bǔ)償

2.1 副邊補(bǔ)償

在松耦合感應(yīng)電能傳輸系統(tǒng)中,若副邊接受線圈直接與負(fù)載相連,系統(tǒng)輸出電壓和電流都會(huì)隨負(fù)載變化而變化,限制了功率傳輸。

Po= (4)

為此,必須對(duì)副邊進(jìn)行有效的補(bǔ)償設(shè)計(jì)。如圖4所示,基本的補(bǔ)償拓?fù)溆须娙荽?lián)補(bǔ)償和電容并聯(lián)補(bǔ)償兩種形式。

(a)未加補(bǔ)償 (b)電容串聯(lián)補(bǔ)償 (c)電容并聯(lián)補(bǔ)償

圖4 副邊補(bǔ)償拓?fù)?


上一頁(yè) 1 2 3 4 下一頁(yè)

關(guān)鍵詞:

評(píng)論


相關(guān)推薦

技術(shù)專區(qū)

關(guān)閉