PCB電源供電系統(tǒng)分析與設計
直流IR壓降
由于芯片的電源柵格(Power Grid)的特征尺寸很小(幾微米甚至更小),芯片內(nèi)的電阻損耗嚴重,因此芯片內(nèi)的IR壓降已經(jīng)被廣泛地研究。而在下面幾種情況下,PCB上的IR壓降(在幾十到幾百毫伏的范圍內(nèi))對高速系統(tǒng)設計同樣會有較大的影響。
電源板層上有Swiss-Chess結(jié)構(gòu)、Neck-Down結(jié)構(gòu)和動態(tài)布線造成的板平面被分割等情況(圖1);電源板層上電流通過的器件管腳、過孔、焊球、C4凸點的數(shù)量不夠,電源平板厚度不足,電流通路不均衡等;系統(tǒng)設計需要低電壓、大電流,又有較緊的電壓浮動的范圍。
圖3:包括和不包括電源整流模塊的平板對輸入阻抗。
例如,一個高密度和高管腳數(shù)的器件由于有大量的過孔和反焊盤,在芯片封裝結(jié)構(gòu)及PCB的電源分配層上往往會形成所謂的Swiss-Chess結(jié)構(gòu)效應。Swiss-Chess結(jié)構(gòu)會產(chǎn)生很多高阻性的微小金屬區(qū)域。根據(jù)
,由于電源供電系統(tǒng)中有這樣的高阻電流通路,送到PCB上元器件的電壓或電流有可能會低于設計要求。因此一個好的直流IR壓降仿真模擬是估計電源供電系統(tǒng)允許壓降范圍的關鍵。通過各種各樣可能性的分析為布局布線前后提供設計方案或規(guī)則。
布線工程師、系統(tǒng)工程師、信號完整性工程師和電源設計工程師還可以將IR壓降分析結(jié)合在約束管理器(constraint manager)中,作為對PCB上每一個電源和地網(wǎng)表進行設計規(guī)則核查的最終檢驗工具(DRC)。這種通過自動化軟件分析的設計流程可以避免靠目測,甚至經(jīng)驗所不能發(fā)現(xiàn)的復雜電源供電系統(tǒng)結(jié)構(gòu)上的布局布線問題。圖2展示了IR壓降分析可以準確地指出一高性能PCB上電源供電系統(tǒng)中關鍵電壓電流的分布。
交流電源地阻抗分析
很多人知道一對金屬板構(gòu)成一個平板電容器,于是認為電源板層的特性就是提供平板電容以確保供電電壓的穩(wěn)定。在頻率較低,信號波長遠遠大于平板尺寸時,電源板層與地板的確構(gòu)成了一個電容。
然而,當頻率升高時,電源板層的特性開始變得復雜了。更確切地說,一對平板構(gòu)成了一個平板傳輸線系統(tǒng)。電源與地之間的噪聲,或與之對應的電磁場遵循傳輸線原理在板之間傳播。當噪聲信號傳播到平板的邊緣時,一部分高頻能量會輻射出去,但更大一部分能量會反射回去。來自平板不同邊界的多重反射構(gòu)成了PCB中的諧振現(xiàn)象。
圖4:三種設置情況下 PowerSI計算得到的PCB輸入阻抗曲線。(a)不包含電源整流模塊;(b)包含電源整流模塊;(c)包含電源整流模塊和一些去耦電容。
在交流分析中,PCB的電源地阻抗諧振是個特有的現(xiàn)象。圖3展示了一對電源板層的輸入阻抗。為了比較,圖中還畫了一個純電容和一個純電感的阻抗特性。板的尺寸是30cm×20cm,板間間距是100um,填充介質(zhì)是FR4材料。板上的電源整流模塊用一個3nH的電感來代替。顯示純電容阻抗特性的是一個20nF的電容。從圖上可以看出,在板上沒有電源整流模塊時,在幾十兆的頻率范圍內(nèi),平板的阻抗特性(紅線)和電容(藍線)一樣。在100MHz以上,平板的阻抗特性呈感性(沿著綠線)。到了幾百兆的頻率范圍后,幾個諧振峰的出現(xiàn)顯示了平板的諧振特性,這時平板就不再是純感性的了。
至此,很明顯,一個低阻的電源供電系統(tǒng)(從直流到交流)是獲得低電壓波動的關鍵:減少電感作用,增加電容作用,消除或降低那些諧振峰是設計目標。
評論