基于DSP+FPGA的高精度程控交流電源設計
3.2 逆變電路設計
逆變電路采用SPWM方式。由于調(diào)制后的信號中除含有調(diào)制信號和高頻率的載波頻率及載波倍頻附近的頻率分量外,幾乎不含其他諧波。因此,提高開關頻率可消除逆變器的低次諧波,減小諧波損耗,但開關頻率過高會使逆變器的開關損耗及電磁干擾大幅增加,同時給DSP的運算及D/A轉(zhuǎn)換帶來壓力。此外,死區(qū)時間在脈寬中所占的比例過大也會造成占空比丟失。因此,從開關器件的損耗、諧波失真度之間折中,選取開關頻率為80 kHz。由于單極性調(diào)制產(chǎn)生的波形失真較大,這里采用雙極性調(diào)制技術。全橋的4個功率管都工作在較高的載波頻率,同一橋臂的兩個功率管互補導通,可得到較為理想的輸出波形。
為降低調(diào)制復雜程度,采用異步方式SPWM技術實現(xiàn)頻率輸出的精密控制,保持調(diào)制頻率(即開關頻率)fc固定不變,通過改變載波比N完成fo的變化。由于電源最高輸出頻率只有1 kHz,所以N較大,一周期內(nèi)脈沖數(shù)較多,脈沖不對稱產(chǎn)生的不利影響較小。
設計中采用電壓跟蹤控制方法生成SPWM波形,可實現(xiàn)高精度輸出。該方法具有高頻濾波設計簡單,輸出諧波小的優(yōu)點,其產(chǎn)生的誤差在工程上可忽略不計。工作原理如下:采用閉環(huán)控制,將希望輸出的波形作為指令信號U*,將實際波形作為反饋信號U,通過兩者的瞬時值比較來決定逆變電路各器件的通斷,使實際的輸出跟蹤指令信號變化。在比較控制過程中,設置一個固定的時鐘,以固定采樣周期對指令信號和被控量采樣,按偏差的極性來控制開關器件通斷。在時鐘信號到來時刻,若UU*,令功率開關導通,使U增大;若U>U*,則令功率開關關斷,使U減小。這樣,各采樣時刻的控制作用都使實際電壓與指令電壓的誤差減小,只要N足夠大,即可保證電壓跟蹤控制精度??紤]到功率器件的開通和關斷都需要時間,為防止上下臂直通造成短路,需設置一定的死區(qū)時間。因此,實際電路工作時,考慮到功率器件的開通和關斷時間,調(diào)制度M=0.85。最大輸出電壓有效值為300 V,故前級電壓輸出應為:/0.85=500V。逆變電路關鍵參數(shù)設計過程如下:
(1)輸出濾波器的設計
①濾波電感:最大紋波電流取滿功率輸出正弦電流峰值的30%,即。而紋波電流△i=[(ui-Uo)/L](D/fs)=(ui-uo)uo/(Lui),其中ui為前級輸出電壓,D為占空比。由上式可知,當uo=0.5ui時,△i最大,故有:△Imax=ui/(4Lfs),所以L=1.49 mH,取1.5 mH。
②濾波電容:濾波電感、電容一起構成低通濾波器。SPWM方式下,為濾除高次諧波成分,取濾波器截至頻率為開關頻率的1/10,即(2πfs)/10,故C=0.26μF。為消除器件非理想特性及死區(qū)等影響,電容值需大一些,設計中取為1μF。
(2)陷波器的設計
為進一步降低諧波失真,在輸出濾波器后側(cè)設置了兩級陷波器電路,電路如圖3所示。
圖中,L1與C1構成第一級陷波器,用于濾除開關頻率噪聲,諧振頻率取fs(80 kHz),取C1=2μF,則L1=[1/(2πfs)2]/C1=2μH;L2與C2構成第二級陷波器,濾除開關頻率二倍頻噪聲。諧振頻率取為160 kHz,取C2=2μF,則L2=500 nH。
4 實驗結果
在樣機上進行了實驗驗證。額定輸出功率750 VA,可實現(xiàn)頻率變化范圍45 Hz~1 kHz,頻率分辨率為10 μHz,電壓變化范圍0~300 V。滿載300 V正弦電壓輸出波形uo如圖4所示。
評論