基于TMS320F2812的快速貨車電子防滑器設計
速度測量的精度直接影響到控制結果, 因此防滑器對速度的測量有較高的要求。本文用函數信號發(fā)生器生成脈沖信號, 模擬速度傳感器速度輸出,用電子防滑器測量其頻率, 以檢驗電子防滑器的速度測量精度。表1
給出了實驗結果。其中,fosc為函數信號發(fā)生器(DF1405)產生信號的頻率,vosc為車軸每轉發(fā)出200 個脈沖情況下對應的速度,fDSP為防滑器測得頻率,vDSP為其對應的速度值。結果表明無論在高速或低速情況下,電子防滑器的速度測量絕對誤差不超過0.05 km/h,相對誤差不超過0.05%,可滿足防滑器對速度測量精度的要求。
3.2 滑行檢測和控制
本文應用模糊控制算法實現防滑控制。為提高DSP運算效率、縮短系統(tǒng)響應時間,系統(tǒng)采用了離線查詢的方法實現模糊控制;通過MATLAB/Simulink仿真設計了二維模糊控制器;滑移率的基本論域為[0,0.25],減速度基本論域為[-4,4]。實際控制過程中只要測得滑移率和減速度的量化值,通過查表的方法即可得到當前控制量。電子防滑器的控制輸出量為充放氣時間(0~500 ms),正值即為充氣,負值為放棄,0為保壓。
設定CPU定時器0周期中斷為5 ms(即單次充放氣時間為5 ms),設定CPU定時器2中斷周期為100 ms[4](即滑行狀態(tài)檢測周期)。則實際控制中,模糊控制量OP在[-50,50]內即實施保壓。
4 防滑模擬試驗
為驗證防滑器控制效果,本文在實驗室進行了防滑模擬試驗,如圖4所示。試驗以LabVIEW軟件為平臺,模擬整車速度信號和打滑車軸速度信號,通過防滑器對容積室壓力的控制模擬,實現對制動缸壓力的控制。在計算機上通過LabVIEW編程讀取MATLAB/Simulink仿真得到的兩路車軸信號,控制NI公司的6008型數據采集卡生成兩路與速度成比例的電壓信號。該電壓信號經電壓頻率轉換電路,得到頻率與速度成比例的脈沖信號,速度脈沖信號經信號調理模塊的光耦隔離接到DSP的CAP腳。其中電壓頻率轉換選用了AD654芯片來實現。AD654是一款低漂移、線性度高、低成本的電壓頻率轉換芯片,只需要很少的外圍元件即可實現電壓轉換。
本試驗控制對象為容積室,其壓力由充氣閥和排氣閥控制,容積室壓力通過壓力傳感器接到數據采集卡,在計算機上通過LabVIEW編程實時顯示容積室壓力。
試驗模擬車輛在制動過程中出現車軸兩次打滑的情況,其結果如圖5所示。當防滑器檢測到車軸滑行時,實時調整容積室壓力,可防止車軸繼續(xù)滑行,在無滑行后繼續(xù)恢復容積室壓力,以保證制動力的順利實施。
防滑控制是快速貨車制動的關鍵技術之一,對保障制動安全、提高制動效率具有重要意義。本文設計的基于DSP的快速貨車電子防滑器能高精度測量車軸速度,并以模糊控制為算法,根據多滑移判據檢測車軸滑行狀態(tài),及時調整制動缸壓力,防止車軸繼續(xù)打滑,從而保障制動安全,縮短制動距離,提高了制動效率。經模擬試驗表明,本防滑器具有響應快、實時性好、準確性高等特點。本文引用地址:http://m.butianyuan.cn/article/196361.htm
評論