基于STM32設計的四軸飛行器飛控系統(tǒng)
NRF2.4G為采用3.3V供電無線模塊,系統(tǒng)采用與單片機相同的電源網絡對其供電,同時加入0.1UF電容進行濾波確保模塊正常工作,無線模塊的具體原理圖連接如圖5所示。
本文引用地址:http://m.butianyuan.cn/article/201609/296521.htm
圖5 飛控板無線模塊原理圖
飛控板的驅動系統(tǒng)采用的是四個分布對稱十字交叉的高速空心杯電機,電機的驅動開關部分采用N溝道增強型場效應晶體管進行控制,通過修改STM32對應引腳上的PWM信號來進行開關MOS管實現(xiàn)電機運行開與關,從而實現(xiàn)電機運轉速度的調節(jié)。電機1、2、3、4分別采用STM32的定時器2的通道0、通道1、通道2和通道3的PWM進行控制。電機1的控制端連接PA0,電機2的控制端采用PA1,電機2的控制端采用PA2,電機3的控制端采用PA3控制,電機的驅動原理圖如圖6所示。
圖6 飛控板電機驅動原理圖
2.3遙控板電路設計
遙控板主控單元通過SPI總線驅動2.4G無線模塊,通過8位并口驅動1602液晶顯示,通過ADC輸入引腳對搖桿和電池電量進行采集,通過引腳驅動三極管開關驅動蜂鳴器提示。遙控板的核心設計是搖桿模擬數(shù)據(jù)進行采集模塊、NRF2401無線模塊等設計。
采用STM32單片機ADC1的通道4、通道5、通道6和通道7進行搖桿模擬數(shù)據(jù)進行采集并轉換為數(shù)字量,分別連接到PA4、PA5、PA6和PA7引腳,并且加入濾波電容減少雜質信號的影響。遙控板搖桿輸入原理圖設計如圖7所示。
圖7 遙控板搖桿輸入原理圖設計
遙控板采用NRF2.4G模塊的驅動采用STM32的自帶外設SPI2進行驅動,各個功能引腳的連接如表2所示。
NRF2.4G模塊采用3.3V供電,在供電端口外加0.1UF濾波存儲電容確保無線系統(tǒng)的穩(wěn)定性,的具體原理圖連接8所示。
圖8 遙控板無線模塊原理圖
3、四軸飛行器的軟件設計
四軸飛行器的軟件設計主要包括飛控板軟件的設計和遙控板軟件的設計。整體軟件在MDK環(huán)境下采用C語言編寫,采用ST-LINK仿真器對程序進行調試與下載。
3.1飛控板系統(tǒng)軟件設計
飛控程序的主要設計思想是開機對無線模塊的初始化、MPU6050的初始化、PWM電機初始化。隨后對整個系統(tǒng)IMU繼續(xù)零偏處理,隨后等待進入解鎖信息的傳入。飛控采用定時器中斷的方式,在中斷中進行對時間的處理,每次中斷計次標志就會自增,根據(jù)不同的中斷積累即不同時間的間隔分別處理優(yōu)先級不同的任務。飛控系統(tǒng)程序設計流程圖如圖9所示。
圖9 飛控系統(tǒng)程序設計流程圖
飛控系統(tǒng)每0.5毫秒中斷一次,每次中斷就會檢查一次無線模塊數(shù)據(jù)的接收,確保飛控系統(tǒng)的控制信息的實時性。每兩次中斷即1毫秒讀取一次IMU單元的數(shù)據(jù),通過濾波算法獲得較為準確的系統(tǒng)加速度、角速度的原始數(shù)據(jù)。每四次中斷即2毫秒通過IMU的原始數(shù)據(jù)計算下當前飛控板系統(tǒng)的姿態(tài),然后結合遙控端的目標姿態(tài),根據(jù)兩者的差值通過PID控制算法進行對各個電機的調速控制。每200次中斷即100毫秒,飛控系統(tǒng)會采集一次電池電壓,然后把電池電壓發(fā)送給遙控板,用來高速操作人員當前電壓的大小。
MPU6050作為系統(tǒng)的慣性測量單元,是整個系統(tǒng)正常運行基礎。MPU6050的驅動總線為IIC方式,為了程序的方便性本系統(tǒng)選用PB10和PB11模擬IIC來驅動。IMU讀取出來的數(shù)據(jù)只是最簡單的加速度、陀螺儀角速度的原始數(shù)據(jù),需要通過進一步的處理才能得到本系統(tǒng)想要的姿態(tài)角度。飛控板姿態(tài)結算流程圖如圖10所示。
根據(jù)處理過后的MPU數(shù)據(jù)來獲得當前的姿態(tài),具體的姿態(tài)獲取理論上是根據(jù)各個角度的積分得到當前的系統(tǒng)姿態(tài)歐拉角。本系統(tǒng)的設計實現(xiàn)是采用四元數(shù)算法對MPU6050最濾波后的數(shù)據(jù)進行計算得到最終的歐拉角。
整個飛控系統(tǒng)的運行動作是通過調整飛控姿態(tài)來實現(xiàn)的,本系統(tǒng)設計在當前姿態(tài)的基礎上,根據(jù)接收到的遙控器的目標姿態(tài)對空心杯電機進行基于PID算法的PWM控制調速,從而實現(xiàn)飛控系統(tǒng)的各種基本運動。飛控板會對系統(tǒng)慣性測量單元傳感器的原始數(shù)據(jù)進行濾波,然后對濾波后的數(shù)據(jù)進行實時結算,最后根據(jù)遙控板發(fā)送來的目標信息進行計算出電機的控制增量,最后根據(jù)PID控制算法對電機進行控制輸出,飛控姿態(tài)控制流程圖如圖11所示。
圖10 飛控板姿態(tài)結算流程圖
圖11 飛控板姿態(tài)控制流程圖
3.2遙控板系統(tǒng)軟件設計
遙控板的作用就是把操作人員的操作動作轉化成信號傳給飛行控制板,同時將一些控制信息和飛控板傳回來的信息進行實時的顯示和處理。飛控板搖桿數(shù)據(jù)的采集用到了STM32的ADC功能STM32F103xx增強型產品內嵌2個12位的模擬/數(shù)字轉換器(ADC),每個ADC共用多達16個外部通道,可以實現(xiàn)單次或掃描轉換。而且STM32的ADC可以采用DMA通道,這樣可以進一步的節(jié)省硬件資源,加快系統(tǒng)實時性。采用SPI1驅動NRF無線模塊,進行與飛控板的數(shù)據(jù)通信,遙控板系統(tǒng)軟件流程如圖12所示。
圖12 遙控板軟件流程圖
本系統(tǒng)采用STM32的ADC1的通道4、通道5、通道6和通道7進行搖桿模擬數(shù)據(jù)進行采集,ADC和DMA的配置代碼如下:
ADC_Configuration(); //ADC 功能配置
DMA_Configuration(); //DMA 功能配置
下面是ADC和DMA的啟動和時能代碼如下:
ADC_SoftwareStartConvCmd(ADC1, ENABLE); //啟動 ADC1 轉換
DMA_Cmd(DMA1_Channel1, ENABLE); //啟動 DMA 通道
采用STM32外設SPI1驅動NRF2.4G模塊,SPI初始化代碼如下:
Spi1_Init();
采用無線模塊的通道40進行通信,2401初始化函數(shù)如下:
Nrf24l01_Init(MODEL_RX2,40); //通道40
2.4G無線模塊NRF2401的接收函數(shù)如下:
Nrf_Check_Event(); //讀取NRF2401數(shù)據(jù)
通過2401將控制信號發(fā)送,發(fā)送函數(shù)如下:
NRF_TxPacket_AP(NRF24L01_TXDATA_RC,32); //將控制信號發(fā)給四軸
4、結論
本文描述了一個簡易四軸飛行器系統(tǒng)的設計實現(xiàn),整個方案分為遙控控制板各飛行控制板兩部分,通過2.4G無線模塊進行控制通信,飛控系統(tǒng)采用IMU系統(tǒng)獲取姿態(tài)信息根據(jù)反饋控制算法進行電機控制從而實現(xiàn)飛行控制。本系統(tǒng)飛控板采用一體設計使得系統(tǒng)簡單、緊湊,遙控板采用搖桿輸入使系統(tǒng)控制體驗良好,最終實現(xiàn)飛行器的基本運動。實踐證明該四軸飛行器飛行穩(wěn)定、可靠,取得了較好效果。
評論