基于FPGA的振動(dòng)信號(hào)采集系統(tǒng)設(shè)計(jì)及實(shí)現(xiàn)
摘要:針對(duì)機(jī)械設(shè)備運(yùn)行中的振動(dòng)監(jiān)控,設(shè)計(jì)振動(dòng)信號(hào)采集系統(tǒng),提出了一種基于FPGA的振動(dòng)信號(hào)采集系統(tǒng)的設(shè)計(jì)方案。重點(diǎn)闡述了系統(tǒng)硬件結(jié)構(gòu)組成、信號(hào)調(diào)理電路和數(shù)據(jù)采集模塊的設(shè)計(jì),同時(shí)對(duì)A/D采樣的控制邏輯進(jìn)行了討論。經(jīng)試驗(yàn)驗(yàn)證表明,該系統(tǒng)可達(dá)到采樣率10 K每秒、采集精度16位,能夠滿足實(shí)時(shí)性和精度要求。
本文引用地址:http://m.butianyuan.cn/article/201610/308294.htm隨著生產(chǎn)機(jī)械、運(yùn)輸機(jī)械或工程結(jié)構(gòu)向著高速、高效、高精度和大型化發(fā)展,機(jī)械設(shè)備的任何部件出現(xiàn)故障都可能降低加工精度,帶來(lái)較大的經(jīng)濟(jì)損失,甚至危及人身安全。機(jī)械部件的振動(dòng)狀態(tài)監(jiān)測(cè)已成為生產(chǎn)中的一個(gè)必不可少的環(huán)節(jié),并對(duì)相應(yīng)機(jī)械部件進(jìn)行早期的故障預(yù)測(cè)。文中采用FPGA為核心開(kāi)發(fā)振動(dòng)信號(hào)采集系統(tǒng),對(duì)數(shù)據(jù)采集模塊及通訊模塊進(jìn)行了同步設(shè)計(jì)。
1 總體設(shè)計(jì)
振動(dòng)信號(hào)采集系統(tǒng)以FPGA芯片為核心,通過(guò)A/D轉(zhuǎn)換芯片采集振動(dòng)信號(hào),然后通過(guò)RS-422串行總線接口將采集的數(shù)據(jù)傳輸給上位機(jī),在故障診斷軟件以作出相應(yīng)的診斷處理。振動(dòng)信號(hào)采集系統(tǒng)的硬件按照功能模塊可以劃分為信號(hào)調(diào)理電路、A/D轉(zhuǎn)換電路、FPGA控制邏輯和RS-422接口轉(zhuǎn)換電路,系統(tǒng)硬件結(jié)構(gòu)如圖1所示。
系統(tǒng)硬件各個(gè)功能模塊的作用如下:
1)信號(hào)調(diào)理電路:信號(hào)調(diào)理電路主要對(duì)由集成電路壓
電式(Integrated Circuit Piezoelectricity,ICP)加速度傳感器采集到的振動(dòng)信號(hào)進(jìn)行調(diào)理驅(qū)動(dòng)、放大和抗混疊濾波處理,使模數(shù)轉(zhuǎn)換器(Analog to Digital Converter ADC)芯片能夠獲取該振動(dòng)信號(hào),并作出進(jìn)一步處理工作。
2)A/D轉(zhuǎn)換電路:A/D轉(zhuǎn)換電路將經(jīng)過(guò)信號(hào)調(diào)理的信號(hào)進(jìn)行模/數(shù)轉(zhuǎn)換,并將轉(zhuǎn)換結(jié)果傳送至FPGA進(jìn)行數(shù)據(jù)采集,此功能電路決定了整個(gè)系統(tǒng)的分辨率和采集精度。
3)FPGA控制邏輯:FPGA芯片是該主控模塊的核心部分,控制振動(dòng)信號(hào)的采集和數(shù)據(jù)傳輸,此功能電路控制著系統(tǒng)的采樣周期。
4)RS422接口轉(zhuǎn)換電路:將A/D轉(zhuǎn)換后的數(shù)字信號(hào),通過(guò)RS422總線傳輸?shù)缴衔粰C(jī)。
2 硬件電路設(shè)計(jì)
2.1 恒流源電路
系統(tǒng)采用ICP集成電路壓電式加速度傳感器檢測(cè)被測(cè)設(shè)備的振動(dòng)信號(hào),它將傳統(tǒng)壓電加速度傳感器和放大器集于一體,供電和信號(hào)輸出共用同一根電纜,通過(guò)恒流源為其供電,輸出信號(hào)經(jīng)過(guò)信號(hào)調(diào)理電路后連接單片機(jī)進(jìn)行測(cè)試,使采集系統(tǒng)得到了簡(jiǎn)化,減少電纜的數(shù)量,同時(shí)省去了電荷放大器,降低了成本。
ICP傳感器所需的供電電源必須能夠提供18~30 V的直流電壓以及2~20 mA的恒定電流。由于傳感器共用電源線與信號(hào)輸出線,所以它的輸出信號(hào)會(huì)包含一個(gè)8~14 V的直流偏置電壓,通過(guò)去耦電容濾除信號(hào)中的直流分量。
本系統(tǒng)采用TI公司的三端可調(diào)恒流源器件LM334芯片。LM334為單片三端可調(diào)恒流源,實(shí)際應(yīng)用中,改變連接電阻就可構(gòu)成不用獨(dú)立電源的兩端理想電流浮置源,改變R可以改變恒流源的電流值,其公式為:
系統(tǒng)中設(shè)置為L(zhǎng)M334的工作電壓28 V,電阻R標(biāo)稱值33 Ω,輸出電流為2 mA。
2.2 信號(hào)調(diào)理模塊的設(shè)計(jì)
2.2.1 隔離、放大電路設(shè)計(jì)
ICP加速度傳感器輸出信號(hào)包含有直流偏置電壓,電路設(shè)計(jì)隔直電容C1和C2濾除此直流分量,然后采用精密儀表運(yùn)算放大器芯片實(shí)現(xiàn)對(duì)模擬信號(hào)的放大處理,通過(guò)調(diào)節(jié)外部比例電阻可完成增益從1至10 000之間的任意選擇。 隔離、放大電路的原理圖如圖2所示。
N1為精密儀表運(yùn)算放大器,其增益值依據(jù)下式可計(jì)算得出:
式中:G為電壓放大增益;Rref為比例參考電阻,單位Ω。
現(xiàn)階段取Rref開(kāi)路,即Rref=∞,計(jì)算可知G=1。
R1、R2為輸入端匹配電阻,標(biāo)稱值4.7 kΩ。
R3、R4為開(kāi)路接地電阻,標(biāo)稱值1 MΩ。
C1、C2為輸入端隔直電容,標(biāo)稱值0.1μF,額定電壓值50 V。通過(guò)C1,C2和R3,R4構(gòu)成的高通電路,-3 dB截至頻點(diǎn)是15.92 Hz,對(duì)信號(hào)進(jìn)行隔直處理,同時(shí)不影響采集信號(hào)。
C3、C4、C5為精密儀表運(yùn)算放大器輸入端的濾波電容,標(biāo)稱值為0.001μF、0.01μF、0.001μF,與R1、R2構(gòu)成低通電路,對(duì)共模信號(hào)的-3 dB截至頻點(diǎn)是33.87 kHz,對(duì)于差模信號(hào)的-3 dB截至頻點(diǎn)是1 610 Hz,有效的濾除進(jìn)入采集電路的干擾信號(hào)。
2.2.2 抗混濾波電路設(shè)計(jì)
經(jīng)過(guò)放大處理后的振動(dòng)信號(hào)會(huì)混雜有高頻干擾信號(hào),這些高頻信號(hào)就會(huì)產(chǎn)生頻率混疊現(xiàn)象,造成采集系統(tǒng)的精度下降。
抗混濾波電路采用二階壓控電壓源低通濾波電路,濾波器的截止頻率則由電阻R1、R2和電容C1、C2控制。二階低通濾波電路的原理圖如圖3所示。
濾波電路設(shè)計(jì)參數(shù)如下:
R1=R2=15 kΩ,R3=R4=10 kΩ,C1=C2=10nF;
二階低通濾波電路的傳遞函數(shù)為:
式中:A(s)為開(kāi)環(huán)增益;Q為等效品質(zhì)因數(shù);ωn為電路的特征角頻率s。
其中Avf=1+R3/R4=2,Q=1/(3-Avf)=1>0,故A(s)的極點(diǎn)全部位于左半s平面,電路不會(huì)產(chǎn)生自激震蕩。
另一方面,由濾波電路傳遞函數(shù)可得幅頻響應(yīng)表達(dá)式為:
可以計(jì)算出,其在ω/ωn=10時(shí),幅頻特性曲線有-40 dB的衰減,電路的幅頻響應(yīng)具有較好的低通特性,濾波器截止頻率f=1/2πRC≈1 062 Hz。
2.3 數(shù)據(jù)采集模塊的設(shè)計(jì)
數(shù)據(jù)采集模塊主要圍繞A/D轉(zhuǎn)換芯片展開(kāi)設(shè)計(jì),系統(tǒng)選用單通道的16位A/D轉(zhuǎn)換芯片進(jìn)行采樣,采樣頻率最高分別可達(dá)100 ksps。目標(biāo)采樣的振動(dòng)信號(hào)的頻率一般為低頻信號(hào),設(shè)計(jì)采集系統(tǒng)的檢測(cè)5 kHz頻率范圍內(nèi)的振動(dòng)信號(hào),按照香農(nóng)采樣定理,A/D轉(zhuǎn)換芯片的采集速率應(yīng)不小于10 k每秒,100 ksps的A/D轉(zhuǎn)換芯片完全可以滿足本系統(tǒng)需求。
由于A/D轉(zhuǎn)換芯片輸出電平為5 V的TTL電平,需要配置電平轉(zhuǎn)換芯片,將5 V電平轉(zhuǎn)換為3.3 V電平,再送入現(xiàn)場(chǎng)可編程門陣列(Field Programmable Gate Arrays,F(xiàn)PGA),完成對(duì)采集電路中A/D轉(zhuǎn)換芯片的時(shí)序控制。
A/D轉(zhuǎn)換公式:A/D芯片采集到的數(shù)值為0~0xFFFF的16位二進(jìn)制數(shù),對(duì)應(yīng)-10 V~+10 V的電壓,電壓轉(zhuǎn)換計(jì)算公式如下:
2.4 通訊模塊的設(shè)計(jì)
RS-422驅(qū)動(dòng)電路由UART協(xié)議、電平轉(zhuǎn)換和接口電路組成,其中協(xié)議轉(zhuǎn)換由可編程邏輯實(shí)現(xiàn)。串行接口數(shù)據(jù)格式為:1個(gè)起始位,8個(gè)數(shù)據(jù)位,奇校驗(yàn)位,1個(gè)停止位,工作頻率設(shè)計(jì)在115 200 bps。FPGA芯片將采集到的AD轉(zhuǎn)換后數(shù)據(jù)轉(zhuǎn)發(fā)到RS-422總線。由于AD采集芯片為16 bit,所以在設(shè)置先發(fā)數(shù)據(jù)的高8 bit,再發(fā)送數(shù)據(jù)的低8 bit。
3 可編程邏輯設(shè)計(jì)
3.1 可編程邏輯功能設(shè)計(jì)
系統(tǒng)選用Xilinx公司的Spartan系列芯片,此系列具有性能優(yōu)良、性價(jià)比高、非易失性等特點(diǎn),擴(kuò)展了片上flash存儲(chǔ)器,用于FPGA的配置和非易失性數(shù)據(jù)的存儲(chǔ),具有充足的資源滿足采集系統(tǒng)的邏輯功能需求??删幊踢壿嫴捎媚K化的設(shè)計(jì)思想,設(shè)計(jì)AD采集模塊和UART協(xié)議模塊。
3.1.1 AD采集模塊
FPGA芯片控制A/D轉(zhuǎn)換芯片RC信號(hào)為低電平,AD芯片啟動(dòng)轉(zhuǎn)換工作,同時(shí)BUSY信號(hào)輸出低電平,轉(zhuǎn)換完成后AD芯片BUSY信號(hào)重置高電平,AD芯片數(shù)據(jù)輸出端口輸出有效數(shù)據(jù)。FPGA檢測(cè)到BUSY信號(hào),將AD芯片轉(zhuǎn)換后的數(shù)據(jù)存入U(xiǎn)ART發(fā)送寄存器中。
3.1.2 UART協(xié)議模塊
UART協(xié)議模塊采用的是串口通訊協(xié)議軟核,其設(shè)計(jì)特點(diǎn)是:
1)波特率為9 600 bps~115.2 kbps可通過(guò)軟件編程;
2)內(nèi)建128字節(jié)接收FIFO和128字節(jié)發(fā)送FIFO;
3)數(shù)據(jù)長(zhǎng)度、停止位長(zhǎng)度、奇偶校驗(yàn)可通過(guò)軟件進(jìn)行編程;
4)計(jì)算公式:波特率=外部時(shí)鐘(14.745 6 MHz)/(16×分頻因子)。
3.2 系統(tǒng)功能邏輯設(shè)計(jì)
采集系統(tǒng)的控制設(shè)計(jì)為周期自動(dòng)采集,一次采樣過(guò)程如下:首先啟動(dòng)A/D轉(zhuǎn)換器,然后判斷BUSY信號(hào)轉(zhuǎn)換是否結(jié)束,A/D轉(zhuǎn)換結(jié)束后FPGA讀取A/D轉(zhuǎn)換結(jié)果,并直接存入U(xiǎn)ART發(fā)送寄存器,然后等待延時(shí)到下一周期,并開(kāi)始第二次采集,自動(dòng)完成振動(dòng)信號(hào)的采集。FPGA的自動(dòng)控制流程如圖4所示。
系統(tǒng)設(shè)計(jì)采樣周期為200 us,遠(yuǎn)大于A/D轉(zhuǎn)換芯片的轉(zhuǎn)換時(shí)間,決定了系統(tǒng)的采樣速率5 kHz,可滿足大多數(shù)機(jī)械部件振動(dòng)信號(hào)的采集要求。采樣周期控制由FPGA使用的時(shí)鐘計(jì)數(shù)決定,此系統(tǒng)使用的時(shí)鐘為10 MHz,系統(tǒng)的周期誤差來(lái)源于晶振本身的誤差,系統(tǒng)使用的晶振初始頻率一溫度誤差為50 PPM,具有極小的時(shí)鐘誤差。
4 系統(tǒng)功能驗(yàn)證
為了驗(yàn)證振動(dòng)信號(hào)采集系統(tǒng)的各項(xiàng)功能,本研究采用由振動(dòng)臺(tái)輸出的正弦信號(hào)作為系統(tǒng)的輸入激勵(lì),由本文設(shè)計(jì)的采集系統(tǒng)對(duì)該振動(dòng)信號(hào)進(jìn)行采集,從而檢驗(yàn)系統(tǒng)采集功能的準(zhǔn)確性。試驗(yàn)中用到的設(shè)備情況如下:使用隨機(jī)振動(dòng)臺(tái),施加21.5 Hz正弦振動(dòng)激勵(lì)信號(hào),幅值分別為1 g和2 g兩種激勵(lì),使用振動(dòng)傳感器精度為104 mV/g,測(cè)量結(jié)果為圖5和圖6所示。
由圖可以看出,信號(hào)的幅值接近激勵(lì)值,與輸入的正弦激勵(lì)信號(hào)基本一致,進(jìn)行頻率分析,進(jìn)行FFT轉(zhuǎn)換后頻率為21.5 Hz,與輸入激勵(lì)信號(hào)的頻率一致。實(shí)驗(yàn)結(jié)果表明,該振動(dòng)信號(hào)采集功能正確。
5 結(jié)論
本文提出的FPGA的振動(dòng)信號(hào)采集系統(tǒng)具有硬件組成少,可在不需要中央處理器即可完成數(shù)據(jù)的自動(dòng)采集,且具備并行可擴(kuò)展性,功能移植性好,同時(shí)具有較高的采樣周期和精度,可以滿足大多數(shù)工業(yè)與航空領(lǐng)域中振動(dòng)采集的要求。
評(píng)論