s3c2440對norflash的操作
對norflash的操作主要就是讀、寫、擦除和識(shí)別等。EN29LV160AB的數(shù)據(jù)寬度可以是8位字節(jié)型,也可以是16位的字型,它由EN29LV160AB的某一引腳配置實(shí)現(xiàn)的。在這里我們選擇字型。
對norflash的讀操作比較簡單,系統(tǒng)上電后會(huì)自動(dòng)進(jìn)入讀模式,而且也不需要額外的命令來實(shí)現(xiàn)讀操作。下面的函數(shù)實(shí)現(xiàn)了讀操作:
U16 read_en29lv160ab(U32 addr)
{
return *((volatile U16 *)(addr));
}
norflash不僅能夠?qū)崿F(xiàn)硬件復(fù)位,而且可以實(shí)現(xiàn)軟件復(fù)位。軟件復(fù)位的操作是向任一地址寫入復(fù)位命令0xF0。下面的函數(shù)實(shí)現(xiàn)了軟件復(fù)位:
void reset_en29lv160ab(void)
{
*((volatile U16 *)0x0) = 0xf0;
}
norflash的擦除操作和寫操作要稍微復(fù)雜一些,它們需要4個(gè)或6個(gè)周期來完成,每一個(gè)周期都要把相應(yīng)的命令寫入norflash中的某一命令寄存器中。寫操作的過程為第一個(gè)周期是把命令0xAA寫入地址為0x555的命令寄存器中,第二個(gè)周期是把命令0x55寫入地址為0x2AA命令寄存器中,第三個(gè)周期是把命令0xA0再寫入地址為0x555命令寄存器中,第四個(gè)周期為真正地把要寫入的數(shù)據(jù)寫入到norflash的地址中。下面的函數(shù)實(shí)現(xiàn)了寫操作,其中該函數(shù)的兩個(gè)輸入?yún)?shù)分別為要寫入的數(shù)據(jù)和地址,為了方便,我們事先定義好命令寄存器:
#define flash_base 0x00000000
#define CMD_ADDR0 *((volatile U16 *)(0x555<<1+flash_base))
#define CMD_ADDR1 *((volatile U16 *)(0x2aa<<1+flash_base))
U8 en29lv160ab_program(U32 addr, U16 dat)
{
CMD_ADDR0 = 0xaa;
CMD_ADDR1 = 0x55;
CMD_ADDR0 = 0xa0;
*((volatile U16 *)(addr)) = dat;
return check_toggle();
}
由于我們是把norflash連接到了s3c2440的bank 0上,因此norflash中的地址相對于s3c2440來說基址為0x00000000。而之所以又把norflash中的地址向左移一位(即乘以2),是因?yàn)槲覀兪前裺3c2440的ADDR1連接到了norflash的A0上的緣故。在該函數(shù)中,我們還調(diào)用了check_toggle函數(shù),它的作用是用于判斷這次操作是否正確,它的原型為:
U8 check_toggle()
{
volatile U16 newtoggle,oldtoggle;
oldtoggle = *((volatile U16 *)0x0);
while(1)
{
newtoggle = *((volatile U16 *)0x0);
if((oldtoggle & 0x40)==(newtoggle & 0x40))
break;
if(newtoggle & 0x20) //DQ5
{
oldtoggle = *((volatile U16 *)0x0);
newtoggle = *((volatile U16 *)0x0);
if((oldtoggle & 0x40)==(newtoggle & 0x40))
break;
else
return 0; //錯(cuò)誤
}
oldtoggle = newtoggle;
}
return 1; //正確
}
它的原理是連續(xù)兩次讀取數(shù)據(jù)總線上的數(shù)據(jù),判斷數(shù)據(jù)總線上的第6位數(shù)值(DQ6)是否翻轉(zhuǎn),如果沒有翻轉(zhuǎn)則正確,否則還要判斷第5位(DQ5),以確定是否是因?yàn)槌瑫r(shí)而引起的翻轉(zhuǎn)。
寫操作只能使“1”變?yōu)?ldquo;0”,而只有擦除才能使“0”變?yōu)?ldquo;1”。因此在寫之前一定要先擦除。擦除分為塊擦除和整片擦除。塊擦除的過程為第一個(gè)周期是把命令0xAA寫入地址為0x555的命令寄存器中,第二個(gè)周期是把命令0x55寫入地址為0x2AA命令寄存器中,第三個(gè)周期是把命令0x80再寫入地址為0x555命令寄存器中,第四個(gè)周期是把命令0xAA寫入地址為0x555的命令寄存器中,第五個(gè)周期是把命令0x55再寫入地址為0x2AA命令寄存器中,第六個(gè)周期是把命令0x30寫入要擦除塊的首地址內(nèi)。下面的函數(shù)為塊擦除,其中輸入?yún)?shù)為要擦除塊的首地址:
U8 en29lv160ab_sector_erase(U32 section_addr)
{
CMD_ADDR0 = 0xaa;
CMD_ADDR1 = 0x55;
CMD_ADDR0 = 0x80;
CMD_ADDR0 = 0xaa;
CMD_ADDR1 = 0x55;
*((volatile U16 *)(section_addr)) = 0x30;
return check_toggle();
}
對norflash另一個(gè)比較常用的操作是讀取芯片的ID。讀取廠商ID的過程為第一個(gè)周期是把命令0xAA寫入地址為0x555的命令寄存器中,第二個(gè)周期是把命令0x55寫入地址為0x2AA命令寄存器中,第三個(gè)周期是把命令0x90再寫入地址為0x555命令寄存器中,第四個(gè)周期為讀取地址為0x100中的內(nèi)容,即廠商ID(0x1C)。讀取設(shè)備ID的過程的前三個(gè)周期與讀取廠商ID相同,第四個(gè)周期是讀取地址為0x01中的內(nèi)容,即設(shè)備ID(0x2249)。下面的函數(shù)為讀取芯片ID:
U32 get_en29lv160ab_id(void)
{
U32 temp=0;
CMD_ADDR0 = 0xaa;
CMD_ADDR1 = 0x55;
CMD_ADDR0 = 0x90;
temp = (*(volatile unsigned short *)(flash_base+ (0x100<<1)))<<16;
temp |= *(volatile unsigned short *)(flash_base + (1<<1));
return temp;
}
下面的程序?qū)崿F(xiàn)了對一塊區(qū)域進(jìn)行擦除,寫入,并讀出的操作,判斷寫入的數(shù)據(jù)是否與讀出的數(shù)據(jù)相同:
…… ……
U16 buffer[1024];
char cmd;
…… ……
void test_en29lv160ab(void)
{
U32 temp;
U8 sta;
int i;
for(i=0;i<1024;i++)
buffer[i]=2*i+1;
//讀ID
temp = get_en29lv160ab_id();
while(!(rUTRSTAT0 & 0x2)) ;
rUTXH0=(U8)((temp&0xff000000)>>24);
while(!(rUTRSTAT0 & 0x2)) ;
rUTXH0=(U8)((temp&0x00ff0000)>>16);
while(!(rUTRSTAT0 & 0x2)) ;
rUTXH0=(U8)((temp&0x0000ff00)>>8);
while(!(rUTRSTAT0 & 0x2)) ;
rUTXH0=(U8)((temp&0x000000ff));
reset_en29lv160ab(); //這里一定要復(fù)位
delay(100);
//擦除塊33
sta=en29lv160ab_sector_erase(0xf0000);
if(sta == 0)
{
while(!(rUTRSTAT0 & 0x2)) ;
rUTXH0=0xaf; //擦除出錯(cuò)
}
else
{
for(i=0;i<1024;i++)
{
sta = en29lv160ab_program(0xf0000+(i<<1),buffer[i]); //寫
if(sta == 0) //寫出錯(cuò)
{
while(!(rUTRSTAT0 & 0x2));
rUTXH0=0xbf;
break;
}
delay(200);
}
if(sta == 1)
{
for(i=0;i<1024;i++)
{
if(read_en29lv160ab(0xf0000+(i<<1))!=buffer[i]) //讀出錯(cuò)
{
while(!(rUTRSTAT0 & 0x2)) ;
rUTXH0=0xcf;
sta = 3;
break;
}
}
if(sta !=3) //全部操作都正確
{
while(!(rUTRSTAT0 & 0x2)) ;
rUTXH0=0x66;
}
}
}
while(!(rUTRSTAT0 & 0x2)) ;
rUTXH0=0x88; //結(jié)束
}
//簡單測試CFI
void test_en29lv160ab_CFI(void)
{
U16 temp;
*((volatile U16 *)(0x55<<1+flash_base))=0x98; //CFI命令
temp = (*(volatile unsigned short *)(flash_base+ (0x10<<1)));
//while(!(rUTRSTAT0 & 0x2)) ;
//rUTXH0=(U8)((temp&0xff00)>>8);
while(!(rUTRSTAT0 & 0x2)) ;
rUTXH0=(U8)(temp&0x00ff);
temp = (*(volatile unsigned short *)(flash_base+ (0x11<<1)));
//while(!(rUTRSTAT0 & 0x2)) ;
//rUTXH0=(U8)((temp&0xff00)>>8);
while(!(rUTRSTAT0 & 0x2)) ;
rUTXH0=(U8)(temp&0x00ff);
temp = (*(volatile unsigned short *)(flash_base+ (0x12<<1)));
//while(!(rUTRSTAT0 & 0x2)) ;
//rUTXH0=(U8)((temp&0xff00)>>8);
while(!(rUTRSTAT0 & 0x2)) ;
rUTXH0=(U8)(temp&0x00ff);
temp = (*(volatile unsigned short *)(flash_base+ (0x13<<1)));
//while(!(rUTRSTAT0 & 0x2)) ;
//rUTXH0=(U8)((temp&0xff00)>>8);
while(!(rUTRSTAT0 & 0x2)) ;
rUTXH0=(U8)(temp&0x00ff);
temp = (*(volatile unsigned short *)(flash_base+ (0x14<<1)));
//while(!(rUTRSTAT0 & 0x2)) ;
//rUTXH0=(U8)((temp&0xff00)>>8);
while(!(rUTRSTAT0 & 0x2)) ;
rUTXH0=(U8)(temp&0x00ff);
temp = (*(volatile unsigned short *)(flash_base+ (0x15<<1)));
//while(!(rUTRSTAT0 & 0x2)) ;
//rUTXH0=(U8)((temp&0xff00)>>8);
while(!(rUTRSTAT0 & 0x2)) ;
rUTXH0=(U8)(temp&0x00ff);
temp = (*(volatile unsigned short *)(flash_base+ (0x16<<1)));
//while(!(rUTRSTAT0 & 0x2)) ;
//rUTXH0=(U8)((temp&0xff00)>>8);
while(!(rUTRSTAT0 & 0x2)) ;
rUTXH0=(U8)(temp&0x00ff);
temp = (*(volatile unsigned short *)(flash_base+ (0x17<<1)));
//while(!(rUTRSTAT0 & 0x2)) ;
//rUTXH0=(U8)((temp&0xff00)>>8);
while(!(rUTRSTAT0 & 0x2)) ;
rUTXH0=(U8)(temp&0x00ff);
temp = (*(volatile unsigned short *)(flash_base+ (0x18<<1)));
//while(!(rUTRSTAT0 & 0x2)) ;
//rUTXH0=(U8)((temp&0xff00)>>8);
while(!(rUTRSTAT0 & 0x2)) ;
rUTXH0=(U8)(temp&0x00ff);
temp = (*(volatile unsigned short *)(flash_base+ (0x19<<1)));
//while(!(rUTRSTAT0 & 0x2)) ;
//rUTXH0=(U8)((temp&0xff00)>>8);
while(!(rUTRSTAT0 & 0x2)) ;
rUTXH0=(U8)(temp&0x00ff);
temp = (*(volatile unsigned short *)(flash_base+ (0x1a<<1)));
//while(!(rUTRSTAT0 & 0x2)) ;
//rUTXH0=(U8)((temp&0xff00)>>8);
while(!(rUTRSTAT0 & 0x2)) ;
rUTXH0=(U8)(temp&0x00ff);
}
void __irq uartISR(void)
{
char ch;
rSUBSRCPND |= 0x1;
rSRCPND |= 0x1<<28;
rINTPND |= 0x1<<28;
ch=rURXH0;
switch(ch)
{
case 0x11: //get ID
cmd = 1;
break;
case 0x66: //test CFI
cmd = 6;
break;
case 0x77: //test norflash
cmd = 7;
break;
}
while(!(rUTRSTAT0 & 0x2)) ;
rUTXH0=ch;
}
void Main(void)
{
U32 temp;
int i;
//uart0 port
rGPHCON = 0x00faaa;
rGPHUP = 0x7ff;
//init uart0
rULCON0 = 0x3;
rUCON0 = 0x5;
rUFCON0 = 0;
rUMCON0 = 0;
rUBRDIV0 = 26;
rSRCPND = (0x1<<19)|(0x1<<28);
rSUBSRCPND = 0x1;
rINTPND = (0x1<<19)|(0x1<<28);
rINTSUBMSK = ~(0x1);
rINTMSK = ~((0x1<<19)|(0x1<<28));
pISR_UART0 = (U32)uartISR;
cmd = 0;
while(1)
{
switch(cmd)
{
case 1: //讀ID
cmd = 0;
temp = get_en29lv160ab_id();
while(!(rUTRSTAT0 & 0x2)) ;
rUTXH0=(U8)((temp&0xff000000)>>24);
while(!(rUTRSTAT0 & 0x2)) ;
rUTXH0=(U8)((temp&0x00ff0000)>>16);
while(!(rUTRSTAT0 & 0x2)) ;
rUTXH0=(U8)((temp&0x0000ff00)>>8);
while(!(rUTRSTAT0 & 0x2)) ;
rUTXH0=(U8)((temp&0x000000ff));
reset_en29lv160ab();
break;
case 0x7:
cmd = 0;
test_en29lv160ab();
break;
case 0x6:
cmd = 0;
test_en29lv160ab_CFI();
reset_en29lv160ab();
break;
}
}
}
評論