基于RS485通信的光伏發(fā)電實時監(jiān)測系統(tǒng)設計
隨著能源危機的日益嚴峻。各種可再生能源得到了長足的發(fā)展。在諸多的可再生能源中,光伏發(fā)電在未來有著廣泛的應用前景,光伏產(chǎn)業(yè)是最有潛力的新能源之一。進行光伏發(fā)電時,對光伏電站發(fā)電狀態(tài)的監(jiān)測是十分必要的。因為單塊光伏組件輸出的直流電壓較低,一般在幾十伏左右,所以通常采用多塊光伏組件相互串聯(lián)。然后各個組串相互并聯(lián)從而形成光伏陣列。在發(fā)電過程中,光伏陣列的局部故障會導致整個供電系統(tǒng)輸出電壓或功率下降.直接影響系統(tǒng)性能和運行效率。為確保系統(tǒng)正常運行,應對光伏陣列進行狀態(tài)監(jiān)測,以便能及時地、有針對性地進行維護。從而提高光伏發(fā)電效率。據(jù)此,本文基于RS485通信和 LabVlEW軟件平臺研發(fā)了一套光伏電站監(jiān)測系統(tǒng)。該系統(tǒng)具有可視化的監(jiān)測界面,可實時顯示光伏發(fā)電系統(tǒng)的發(fā)電狀態(tài),并可供用戶查詢歷史數(shù)據(jù)以便進行統(tǒng)計分析。
本文引用地址:http://m.butianyuan.cn/article/201612/331452.htm1 系統(tǒng)結構及原理
圖1為系統(tǒng)總體結構框圖。PC機主要對光伏發(fā)電系統(tǒng)中的溫度、光照強度等環(huán)境參數(shù)和輸出電流、輸出電壓、輸出功率等發(fā)電信息進行監(jiān)控、統(tǒng)計及顯示。單片機、A/D轉換和傳感器構成一個數(shù)據(jù)采集器,傳感器將環(huán)境參數(shù)和發(fā)電信息采集過來,通過A/D轉換將模擬信號變成數(shù)字信號發(fā)送至單片機,單片機將數(shù)據(jù)處理后緩存并發(fā)送。單片機與PC機之間采用RS485轉RS232通信協(xié)議進行數(shù)據(jù)傳輸。PC機將接受到的數(shù)據(jù)處理后保存并及時顯示,實現(xiàn)對光伏發(fā)電系統(tǒng)各類參數(shù)的實時監(jiān)測。
2 硬件電路設計
本系統(tǒng)硬件電路主要包括2方面:數(shù)據(jù)采集模塊和通信。數(shù)據(jù)采集部分將所需數(shù)據(jù)采集處理后,通過單片機發(fā)送至上位機:通信部分在硬件上主要是電平的轉換和與上位機通信時接口處理。
系統(tǒng)處理器采用STC89C51芯片,該芯片具有8 K字節(jié)Flash,512字節(jié)RAM,32位I/O口線,看門狗定時器,3個16位定時器/計數(shù)器,4個外部中斷,1個7向量4級中斷結構,全雙工串行口,是一種低功耗、高性能微控制器。
2.1 數(shù)據(jù)采集模塊
該模塊主要功能是采集電流、電壓、溫度、照度4類數(shù)據(jù)。利用模數(shù)轉換芯片將傳感器采集回來的模擬信號轉換成數(shù)字信號,再由單片機進行數(shù)據(jù)處理。模數(shù)轉換芯片采用ADC0809,它是8位逐次逼近式模數(shù)轉換器,包括1個8位的逼近型的ADC部分,并提供1個8通道的模擬多路開關和聯(lián)合尋址邏輯,用它可直接將8個單端模擬信號輸入,分時進行A/D轉換。本系統(tǒng)中只需要應用其中的4個通道,分別對有傳感器采集回來的電流、電壓、溫度、照度4個模擬信號進行轉換 。然后由51單片機進行數(shù)據(jù)存儲及數(shù)據(jù)處理,完成對模擬信號的采集。
由于ADC0809芯片內(nèi)部沒有時鐘脈沖源, 可利用單片機89C51提供的地址鎖存控制輸入信號ALE經(jīng)D觸發(fā)器四分頻后,作為ADC0809的時鐘輸入。當CPU訪問外部存儲器時.ALE的輸出作為外部鎖存地址的低字節(jié)的控制信號:當不訪問外部存儲器時,ALE端以1/6的時鐘振蕩頻率固定地輸出正脈沖,可取單片機的時鐘頻率為12 MHz。則ALE端輸出的頻率為2 MHz。再經(jīng)四分頻后為500kHz,符合ADC0809對時鐘的要求。
如圖2所示。ADC0809內(nèi)部設有地址鎖存器,通道地址由P2口的低3位直接與ADC0809的A、B、C相連,通道基本地址為0000H~0007H。模擬量由ADC0809的IN0~IN7輸入.數(shù)字量由ADC0809的DO~D7輸出并接到單片機I/O口的P0口,ADC0809其他引腳如:START、OE、ALE、A、B、C等直接接到單片機的P2口。最后ADC0809的結束信號端口直接接到單片機的P2.7口。
2.2 通信部分
PC機串行口為標準的RS232C接口,最大通信距離僅為15 m,無法適用于遠距離的監(jiān)測。選用RS485串行接口標準可實現(xiàn)管理微機遠距離對下位機進行通信管理。串口通信采用RS485協(xié)議進行,其傳輸距離較長。適用于從光伏發(fā)電設備到監(jiān)控設備之間的數(shù)據(jù)傳輸。RS485采用差分信號負邏輯,邏輯“1”以兩線間的電壓差為+(2~6)V表示;邏輯“0”以兩線間的電壓差為-(2~6)V表示。RS485接口是采用平衡驅(qū)動器和差分接收器的組合,抗共模干擾能力增強,即抗噪聲干擾性好。RS485最大的通信距離約為1219 m,最大傳輸速率為10 Mb/s,傳輸速率與傳輸距離成反比。
采用Rs485通信時,需要解決2個問題。STC89C51本身具有全雙工串行口.但進行RS485通信時需要電平轉換:PC機串行1:1為標準的RS232C接口,通信時需要將RS485接口的邏輯電平轉換成RS232電平。Rs485通信的電平轉換芯片有全雙工的和半雙工的,為了便于軟件開發(fā),本次設計采用全雙工芯片MAX488。
如圖3所示,電平轉換電路采用MAX488全雙工集成芯片,使用時將單片機的串行收發(fā)端接人RS488的發(fā)收端。為保持通信信號的穩(wěn)定,一般會在MAX488加上、下拉電阻。上拉電阻把不確定的信號通過一個電阻嵌位在高電平,此電阻還起到限流的作用。同理,下拉電阻將不確定的信號嵌位在低電平。在實際工程應用中,由于存在反射信號和環(huán)境等各種干擾的影響,特別是在通訊波特率比較高的時候,在線路上加上、下拉偏置電阻是非常必要的。上、下拉電阻可提高總線的抗電磁干擾能力,管腳懸空容易受到外界的電磁干擾,同時長線傳輸中電阻不匹配容易引起反射波干擾,加上、下拉電阻就是電阻匹配,可有效地抑制反射波干擾。
評論