智能天線的測(cè)試項(xiàng)目及測(cè)試方法
1、引言 智能天線技術(shù)的研究起始于20世紀(jì)60年代,最初的研究對(duì)象是雷達(dá)天線陣,主要目的是提高雷達(dá)的性能和電子對(duì)抗的能力。隨著移動(dòng)通信的發(fā)展及對(duì)移動(dòng)通信電波傳播、組網(wǎng)技術(shù)、天線理論等方面研究的逐漸深入,數(shù)字信號(hào)處理芯片處理能力不斷提高,利用數(shù)字技術(shù)在基帶形成天線波束成為可能。到了20世紀(jì)90年代,陣列處理技術(shù)引入移動(dòng)通信領(lǐng)域,很快形成了一個(gè)新的研究熱點(diǎn)——智能天線。其中,我國(guó)在享有獨(dú)立自主知識(shí)產(chǎn)權(quán)的TD-SCDMA技術(shù)中,就已經(jīng)成功地引進(jìn)了智能天線技術(shù)。從某種程度上可以說,智能天線是3G區(qū)別于2G系統(tǒng)的關(guān)鍵標(biāo)志之一。 智能天線是利用數(shù)字信號(hào)處理技術(shù)產(chǎn)生空間定向波束,使天線的主波束跟蹤用戶信號(hào)到達(dá)方向,旁瓣或零陷對(duì)準(zhǔn)干擾信號(hào)到達(dá)方向,利用多個(gè)天線單元空間的正交性和信號(hào)在傳輸方向上的差別,將同頻率或同時(shí)隙、同碼道的信號(hào)區(qū)分開來,最大限度地利用有限的信道資源。它在提高系統(tǒng)通信質(zhì)量、緩解無線通信業(yè)務(wù)日益發(fā)展與頻譜資源不足的矛盾以及降低系統(tǒng)整體造價(jià)和改善系統(tǒng)管理等方面,都具有獨(dú)特的優(yōu)點(diǎn)。 既然智能天線有如此多的好處,那么隨著TD-SCDMA系統(tǒng)商用化的腳步越來越近,作為T D-SCDMA系統(tǒng)的關(guān)鍵技術(shù)之一的智能天線技術(shù)也越來越得到大家的重視,因此智能天線的測(cè)試方法也就顯得至關(guān)重要。 2、智能天線的分類 智能天線按照類型可以分為全向智能天線陣和定向智能天線陣。 對(duì)于定向智能天線陣來說,包括以下三類測(cè)試參數(shù)。 (1)電路參數(shù)。包括垂直面電下傾角預(yù)設(shè)置值、垂直面電下傾角精度、垂直面機(jī)械下傾范圍;輸入阻抗、各單元端口駐波比、相鄰單元端口隔離度、每端口連續(xù)波功率容量。 (2)校準(zhǔn)參數(shù)。包括校準(zhǔn)端口至各單元端口的耦合度、校準(zhǔn)端口至各單元端口幅度最大偏差、校準(zhǔn)端口至各單元端口相位最大偏差、校準(zhǔn)端口駐波比、校準(zhǔn)通道耦合方向性。 (3)性能參數(shù)。包括各單元端口有源輸入回波損耗、垂直面半功率波束寬度、垂直面上部第一旁瓣抑制和下部第一零點(diǎn)填充;單元波束水平面半功率波束寬度、增益、前后比交叉極化比(軸向)和交叉極化比(±60°范圍內(nèi));業(yè)務(wù)波束水平面半功率波束寬度、視軸增益、水平面旁瓣電平和前后比、廣播波束水平面半功率波束寬度、視軸增益、視軸增益Φ=±60°處電平下降、半功率波束寬度內(nèi)的電平波動(dòng)。 對(duì)于全向智能天線陣來說,也可以分為三類測(cè)試參數(shù)。 (1)電路參數(shù)。包括垂直面電下傾角預(yù)設(shè)置值、垂直面電下傾角精度;輸入阻抗、各單元端口駐波比、相鄰單元端口隔離度、每端口連續(xù)波功率容量。 (2)校準(zhǔn)參數(shù)。包括校準(zhǔn)端口至各單元端口的耦合度、校準(zhǔn)端口至各單元端口幅度最大偏差、校準(zhǔn)端口至各單元端口相位最大偏差、校準(zhǔn)端口駐波比、校準(zhǔn)通道耦合方向性。 (3)性能參數(shù)。包括各單元端口有源輸入回波損耗、垂直面半功率波束寬度、垂直面上部第一旁瓣抑制和下部第一零點(diǎn)填充;單元波束水平面半功率波束寬度、增益、前后比交叉極化比(軸向)和交叉極化比(±60°范圍內(nèi));業(yè)務(wù)波束水平面半功率波束寬度、視軸增益、水平面旁瓣電平、廣播波束視軸增益、方向圖圓度。 3、智能天線的測(cè)試項(xiàng)目及測(cè)試方法 下面針對(duì)智能天線不同于普通天線的測(cè)試項(xiàng)目進(jìn)行介紹。 首先,智能天線比普通天線增加了校準(zhǔn)端口,主要是為了動(dòng)態(tài)地校準(zhǔn)各個(gè)單元端口的幅度和相位的一致性,校準(zhǔn)的準(zhǔn)確與否直接決定了智能天線的應(yīng)用效果,因此,對(duì)校準(zhǔn)端口至各單元端口幅度最大偏差和校準(zhǔn)端口至各單元端口相位最大偏差提出了相應(yīng)的要求。在測(cè)試的過程中,校準(zhǔn)端口與每個(gè)饋電端口形成一個(gè)校準(zhǔn)通道,對(duì)任意端口進(jìn)行測(cè)量得到相位/幅度誤差,在相同頻點(diǎn)上取所有測(cè)量值之間的最大偏差即得到本指標(biāo)。 校準(zhǔn)電路參數(shù)的測(cè)量示意如圖1所示。 圖1 天線校準(zhǔn)電路測(cè)量示意 測(cè)量步驟如下: (1)將被測(cè)天線安裝在符合測(cè)量條件的自由空間或模擬自由空間; (2)按測(cè)量系統(tǒng)要求進(jìn)行系統(tǒng)校準(zhǔn); (3)將測(cè)量系統(tǒng)與被測(cè)天線的校準(zhǔn)端口和第i個(gè)饋電端口相連接,被測(cè)天線的其余端口一律接匹配負(fù)載,在工作頻率范圍內(nèi)進(jìn)行傳輸系數(shù)S(i,CAL)的測(cè)量; (4)重復(fù)步驟(3),測(cè)試所有端口的S(i,CAL)值。 測(cè)出校準(zhǔn)端口CAL至多個(gè)輻射端口i的傳輸系數(shù)S(i,CAL)后,對(duì)所有測(cè)試的S(i,CAL)值分別求模和求相角,將所有模曲線和相角曲線分別畫在兩張圖中,比較并分別求出最大的模(即幅度)偏差和相位偏差。 其次,是各單元端口有源輸入回波損耗。 有源輸入回波損耗區(qū)別于普通的回波損耗的地方在于它是在各個(gè)單元端口均有輸入信號(hào),且是形成不同方向波束的情況下的回波損耗,因此將它叫作有源輸入回波損耗,測(cè)量示意如圖2所示。 圖2 有源回波損耗測(cè)量示意 本文引用地址:http://m.butianyuan.cn/article/201612/333831.htm有源輸入回波損耗間接測(cè)量步驟如下: 1)將被測(cè)天線安裝在符合測(cè)量條件 的自由空間或模擬自由空間;
單元波束是指 廣播波束是指對(duì)智能天線陣列施加特定的幅度和相位激勵(lì)所形成的全向覆蓋或扇區(qū)覆蓋的輻射方向圖。 對(duì)于定向智能天線,廣播波束可以分為30°、65°、90°和100°,分別對(duì)應(yīng)于不同扇區(qū)的覆蓋要求。對(duì)于全向智能天線,廣播波束應(yīng)為360°覆蓋,因此對(duì)其圓度提出了相應(yīng)的要求。 不同的天線廠商,由于工藝和設(shè)計(jì)方式不同,廣播波束的幅相加權(quán)系數(shù)也有所區(qū)別,因此要求天線廠商提供不同廣播波束相應(yīng)的幅相加權(quán)系數(shù)。 業(yè)務(wù)波束是指對(duì)智能天線陣列施加特定的幅度和相位激勵(lì)所形成的在工作角域內(nèi)具有任意波束指向掃描以及具有高增益窄波束的方向圖。 定向智能天線的第一種波束是指波束為天線端口輸入等幅同相信號(hào)得到的波束;另一種為各列單元的激勵(lì)幅度均勻且激勵(lì)相位呈線性遞增(差分相位規(guī)定為,其中:為工作頻段的中心頻點(diǎn)的波長(zhǎng)、d為相鄰列的水平方向間距、=60°)時(shí)所得到的增益。 對(duì)于全向智能天線的第一種波束,按照以下公式: 其中,i=1,2,……N,N=8(對(duì)于8列陣)。 計(jì)算出相應(yīng)天線端口的幅度和相位,然后進(jìn)行激勵(lì)即可得到第一種波束,其中為每個(gè)工作頻段的中心頻點(diǎn)。 以增益測(cè)量為例,單元波束、業(yè)務(wù)波束和廣播波束的測(cè)試均可以采用圖3所示的測(cè)試框圖。 圖3 天線增益測(cè)試示意 測(cè)試條件如下。 式中:L——源天線與被測(cè)天線距離(m); 測(cè)量開始前,應(yīng)準(zhǔn)備好與測(cè)量參數(shù)相對(duì)應(yīng)的天線陣列幅相加權(quán)饋電網(wǎng)絡(luò),在對(duì)其幅相加權(quán)值確認(rèn)的同時(shí),要在非被測(cè)網(wǎng)絡(luò)單元端接匹配負(fù)載的情況下,分別測(cè)量出總的饋電輸入端口到各陣列單元輸入端口傳輸系數(shù)的模|Si,j|(dB),并利用公式: (其中N為陣列單元饋電端口數(shù)),求出與測(cè)量參數(shù)對(duì)應(yīng)的天線陣列加權(quán)饋電網(wǎng)絡(luò)的插入損耗Ln。 開始測(cè)量時(shí),必須將被測(cè)天線和增益基準(zhǔn)天線交替做水平和俯仰調(diào)整,以確保每一天線在水平和俯仰上的最佳指向,使其接收的功率電平為最大。 測(cè)量步驟如下。 (其中N為陣列單元饋電端口數(shù)),求出與測(cè)量參數(shù)對(duì)應(yīng)的天線陣列加權(quán)饋電網(wǎng)絡(luò)的插入損耗Ln。 開始測(cè)量時(shí),必須將被測(cè)天線和增益基準(zhǔn)天線交替做水平和俯仰調(diào)整,以確保每一天線在水平和俯仰上的最佳指向,使其接收的功率電平為最大。 測(cè)量步驟如下。 5) 在同一個(gè)工作頻帶內(nèi),測(cè)量高、中、低三個(gè)頻率點(diǎn),并計(jì)算分貝平均值。
方向圖圓度(全向天線)、半功率波束寬度、前后比、交叉極化比和天線電下傾角的測(cè)量方法同理也可以參考增益的測(cè)試框圖和測(cè)試步驟進(jìn)行,在此就不詳細(xì)介紹了。 4、小結(jié) 智能天線測(cè)試的復(fù)雜度比普通天線要復(fù)雜得多,只有做好了以上的測(cè)試,才能對(duì)智能天線的性能進(jìn)行全面的考核,將智能天線的優(yōu)勢(shì)發(fā)揮出來。 |
評(píng)論