高速模數(shù)轉(zhuǎn)換器輸入阻抗測量
圖6: 這條曲線說明了沒去掉前端電路寄生效應(yīng)的ADC阻抗。
圖7: 這條曲線說明了去掉前端電路寄生效應(yīng)的ADC的阻抗。
轉(zhuǎn)換器輸入阻抗計算:數(shù)學方法
現(xiàn)在我們通過數(shù)學方法分析一下,看花在實驗室測量上的時間是否值得??蓪θ魏无D(zhuǎn)換器的內(nèi)部輸入阻抗實施建模(圖8)。該網(wǎng)絡(luò)是表述跟蹤模式下(即采樣時)輸入網(wǎng)絡(luò)交流性能的一個良好模型。
圖8: 跟蹤模式(實施采樣時)下,ADC內(nèi)部輸入網(wǎng)絡(luò)的AC性能。
ADC internal input Z:ADC內(nèi)部輸入阻抗
通常,任何數(shù)據(jù)手冊都會給出某種形式的靜態(tài)差分輸入阻抗、以及通過仿真獲得的R||C值。本文所述方式所用的模型非常簡單,目的是求出高度近似值并簡化數(shù)學計算。否則,如果等效阻抗模型還包括采樣時鐘速率和占空比,那么很小的阻抗變化就可能使數(shù)學計算變得異常困難。
還應(yīng)注意,這些值是ADC內(nèi)部電路在跟蹤模式下采樣過程(即對信號進行實際采樣)中的反映。在保持模式下,采樣開關(guān)斷開,輸入前端電路與內(nèi)部采樣處理或緩沖器隔離。
推導該簡單模型(圖8)并求解實部和虛部:
Z0 = R, Z1 = 1/s • C, s = j • 2 • π • f, f = frequency
ZTOTAL = 1/(1/Z0 + 1/Z1) = 1/(1/R + s • C) = 1/((1 + s • R • C)/R)) = R/(1 + s • R • C)
代換s并乘以共軛復數(shù):
ZTOTAL = R/(1 + j • 2 • π • f • R • C) = R/(1 + j • 2 • π • f • R • C) • ((1 – j • 2 • π • f • R • C)/(1 – j • 2 • π • f • R • C)) = (R –j • 2 • π • f • R2 • C)/(1 + (2 • π • f • R • C)2)
求出“實部”(Real)和“虛部”(Imag):
ZTOTAL = Real + j • Imag = R/(1 + (2 • π • f • R • C)2) + j • (–2 • π • f • R2 • C)/(1 + 2 • π • f • R • C)2)
Real = R/(1 + (2 • π • f • R • C)2) Imag = (–2 • π • f • R2 • C)/(1 + (2 • π • f • R • C)2)
這一數(shù)學模型與跟蹤模式下的交流仿真非常吻合(圖9和圖10)。這個簡單模型的主要誤差源是阻抗在高頻時的建立水平。注意,這些值一般是通過一系列仿真得出的,相當準確。
評論