激光雷達:從光電技術(shù)角度看自動駕駛
激光雷達和與之競爭的傳感器技術(shù)(相機、雷達和超聲波)加強了對傳感器融合的需要,也對認真謹慎地選擇光電探測器、光源和MEMS振鏡提出了更高的要求。
本文引用地址:http://m.butianyuan.cn/article/201804/378522.htm傳感器技術(shù)、成像、雷達、光探測技術(shù)及測距技術(shù)(激光雷達)、電子技術(shù)和人工智能的進步,使數(shù)十種先進的駕駛員輔助系統(tǒng)(ADAS)得以實現(xiàn),包括防撞、盲點監(jiān)測、車道偏離預(yù)警和停車輔助等。通過傳感器融合實現(xiàn)這些系統(tǒng)的同步運行,可以讓完全自動駕駛的車輛監(jiān)視周圍環(huán)境,并警告駕駛員潛在的道路危險,甚至采取獨立于駕駛員的躲避行動以防止碰撞。
自動駕駛汽車還必須在高速狀態(tài)下區(qū)分和識別前方的物體。通過測距技術(shù),這些自動駕駛汽車必須快速構(gòu)建一張約100m距離內(nèi)的三維(3D)地圖,并在高達250m距離范圍內(nèi)創(chuàng)建高角分辨率的圖像。如果駕駛員不在場,車輛的人工智能必須做出最佳決策。
完成這一任務(wù)的幾種基本方法之一,就是測量能量脈沖從自動駕駛車輛到目標再返回車輛的往返飛行時間(ToF)。當知道“脈沖”通過空氣的速度時,就可以計算到反射點的距離——脈沖可以是超聲波(聲納)、無線電波(雷達)或光(激光雷達)。
在這三種ToF技術(shù)中,激光雷達是提供更高角度分辨率圖像的最佳選擇,因為它具有更小的衍射特性和光束發(fā)散度,可以比微波雷達更好地識別相鄰物體。這種高角度分辨率在高速下尤為重要,可以提供足夠的時間來應(yīng)對潛在的危險,如迎面碰撞。
激光光源的選擇
在ToF激光雷達中,激光發(fā)射持續(xù)時間為τ的脈沖,在發(fā)射瞬間觸發(fā)定時電路中的內(nèi)部時鐘(下文有圖示)。從目標反射的光脈沖到達光電探測器,轉(zhuǎn)換產(chǎn)生電信號輸出使時鐘停止計時。這種測量往返ToF Δt時間的方式可以計算到反射點的距離R。
如果激光和光電探測器實際上位于同一位置,則距離由下公式確定:
中c是真空中光速,n是傳播介質(zhì)的折射率(對空氣來說大約為1),影響距離分辨率ΔR的因素有兩個:測量Δt時的不確定度δΔt和脈沖寬度的導(dǎo)致的空間誤差w(w = cτ)。
以第一個因素代表測距分辨率ΔR=1/2 cδΔτ,而以第二個代表測距分辨率ΔR=1/2 w = 1/2 cτ。如果以5cm的分辨率測量距離,上述關(guān)系式分別意味著δΔt大約為300ps,τ大約為300ps。
飛行時間激光雷達要求光電探測器和其后的電子學系統(tǒng)具有很小的時間抖動(δΔτ的主要貢獻因素)以及能夠發(fā)射短脈寬時間的脈沖激光器,例如相對昂貴的皮秒激光器。目前典型的汽車激光雷達系統(tǒng)中的激光器產(chǎn)生約4ns持續(xù)時間的脈沖,所以減小光束發(fā)散是必要的。
光束發(fā)散取決于波長和發(fā)射天線尺寸(微波雷達)或透鏡孔徑大小(激光雷達)的比值。微波雷達這一比值較大,因此發(fā)散度更大,角度分辨率較低。圖中微波雷達(黑色)將無法區(qū)分這兩輛車,而激光雷達(紅色)可以。
對汽車激光雷達系統(tǒng)設(shè)計者來說,最關(guān)鍵的選擇之一是光波長。制約這一選擇的因素有幾個:
· 對人類視覺的安全性
· 在大氣中的傳播特性
· 激光的可用性和光電探測器的可用性
兩種最流行的波長是905和1550 nm,905nm的主要優(yōu)點是硅在該波長處吸收光子,而硅基光電探測器通常比探測1550 nm光所需的銦鎵砷(InGaAs)近紅外探測器便宜。
可用于自動駕駛激光雷達的濱松近紅外MPPC(硅光電倍增管),在905nm處具有較高的探測效率,響應(yīng)速度快,工作溫度范圍寬,適合各種場合下的激光雷達應(yīng)用,尤其是使用TOF測距法的長距離測量。
然而,1550nm的人類視覺安全度更高,可以使用單脈沖更大輻射能量的激光——這是光波長選擇的一個重要因素。
1550nm探測器 濱松InGaAs APD G8931
大氣衰減(在所有天氣條件下)、空氣中粒子的散射以及目標表面的反射率都與波長有關(guān)。由于有各種各樣可能的天氣條件和反射表面,對于這些條件下汽車激光雷達波長的選擇來說是一個復(fù)雜的問題。在大多數(shù)實際情況下,905 nm處的光損失更小,因為在1550 nm處的水分的吸收率比905 nm處要大。
光探測器的選擇
只有一小部分脈沖發(fā)射的光子可以到達光電探測器的有效區(qū)域。如果大氣衰減沿脈沖路徑不變化,激光光束發(fā)散度可忽略不計,光斑尺寸小于目標,入射角垂直于探測器且反射體是朗伯體(所有方向均反射),則光接收峰值功率P(R)為:
P0是發(fā)射激光脈沖的光峰值功率,ρ是目標的反射率,A0是接收器孔徑面積,η0是光學系統(tǒng)透過率,γ是大氣消光系數(shù)。
該方程表明,隨著距離R的增加,接收功率迅速減小。為了合理選擇參數(shù),R=100 m,探測器的活動區(qū)域上返回光子的數(shù)量大約是幾百到幾千,而通常發(fā)射的光子超過1012。這些回波光子與背景光子同時被探測,而背景光子沒有任何有用信息。
采用窄帶濾波器可以減少到達探測器的背景光,但不能減少到零,背景光的影響使檢測動態(tài)范圍減小,噪聲(背景光子拍攝噪聲)增大。值得注意的是,典型條件下地面太陽輻照度在1550 nm處小于905 nm。
飛行時間(ToF)激光雷達的基本原理示意
在一輛汽車周圍360°×20°的區(qū)域內(nèi)創(chuàng)建一張完整的3D地圖需要一束經(jīng)過光柵分光后進行掃描,或多束激光束掃描,再或者將光束整個覆蓋住需要的范圍并收集返回的點云數(shù)據(jù)。前者被稱為掃描(scanning)激光雷達,后者稱為閃光(flash)激光雷達。
評論