了解地震信號檢測網(wǎng)絡(luò)的基礎(chǔ)知識
簡介
本文引用地址:http://m.butianyuan.cn/article/202003/411186.htm隨著世界相互聯(lián)系和相互依存的程度越來越高,中型和大型地震可能會造成重大的經(jīng)濟(jì)破壞和損失。發(fā)生在任何脆弱城市中心地區(qū)的大地震,都會對中心地區(qū)的國民經(jīng)濟(jì)及其企業(yè)提供服務(wù)和全球參與的能力產(chǎn)生連鎖反應(yīng)1。應(yīng)認(rèn)識到地震風(fēng)險(xiǎn)是一個(gè)全球性問題,提高地震監(jiān)測能力以減輕這種風(fēng)險(xiǎn)是至關(guān)重要的責(zé)任。
改進(jìn)地震監(jiān)測的一個(gè)關(guān)鍵因素是地震傳感器網(wǎng)絡(luò)的實(shí)現(xiàn),這需要廣泛部署地震儀器并將其互連2。然而,安裝大量傳統(tǒng)地震儀器的成本和復(fù)雜性均很高3 。集成物聯(lián)網(wǎng)技術(shù)可提供低成本解決方案,同時(shí)維持標(biāo)準(zhǔn)地震數(shù)據(jù)質(zhì)量4。本文討論地震和地動(dòng)傳感器的物理原理、遵循的現(xiàn)代儀器標(biāo)準(zhǔn)以及它們提取的特征。此外,針對不同地震傳感器網(wǎng)絡(luò)應(yīng)用,我們開發(fā)了一個(gè)采用ADI解決方案的系統(tǒng)設(shè)計(jì)。
地震
地震是由構(gòu)造板塊的運(yùn)動(dòng)和碰撞引發(fā)的事件。碰撞產(chǎn)生的能量以地震波的形式在地球內(nèi)部表面周圍傳播。這些波有多個(gè)方向,分為體波和面波。
體波有兩種類型:縱波(P波)和橫波(S波)。P波以一系列壓縮波和稀疏波的形式沿傳播方向行進(jìn)。由于其傳播的性質(zhì),P波呈球面發(fā)散。雖然其波能衰減在所有類型的波中是最大的,但其速度最快,介于 5 km/s 至 8 km/s 之間。快速能量衰減也使其成為破壞性最小的一類波。P波不僅可以通過表面?zhèn)鞑?,還可以通過水或流體傳播。
S波也稱為剪切波,緊隨P波之后到達(dá)。其沿地球表面?zhèn)鞑サ乃俣燃s為P波的60%至70%。此類波垂直于傳播方向和地球表面行進(jìn)。S波的能量衰減較少,比P波更具破壞性。P波和S波統(tǒng)稱為體波。
圖1.地震波的類型:(a) 縱波;(b) 橫波;(c) 勒夫波;(d) 瑞利波5
面波比體波慢10%,但破壞力最大。值得注意的是,地震波的傳播速度與其經(jīng)過的土壤類型有很大關(guān)系6。面波由瑞利波和勒夫波組成。瑞利波是一種以紋波形式在地表附近傳播的面波,它會引起順行(沿傳播方向)或逆行(與傳播方向相反)旋轉(zhuǎn)。由于其運(yùn)動(dòng)性質(zhì),它也被稱為地滾波。勒夫波的行進(jìn)方向與傳播方向正交,但與地球表面平行。圖1顯示了不同類型的波及其對地球本體的影響。
震級、強(qiáng)度和頻譜強(qiáng)度
地震震級和地震強(qiáng)度常常被相互混淆。二者有一定的相關(guān)性,但卻是兩個(gè)不同地震參數(shù)的量度。
地震強(qiáng)度
地震強(qiáng)度(簡稱強(qiáng)度)在很大程度上取決于測量位置的特性。它描述地震對特定區(qū)域的影響,在世界范圍內(nèi)普遍使用,是一種量化振動(dòng)方式和破壞程度的傳統(tǒng)方法。因此,地震強(qiáng)度沒有一個(gè)真實(shí)的值。地震強(qiáng)度值遵循修正的Mercalli強(qiáng)度量表(1至12)或Rossi-Forel量表(1至10)。不過,修正的Mercalli強(qiáng)度(MMI)現(xiàn)已成為世界的主導(dǎo)標(biāo)準(zhǔn)。表1列出了美國地質(zhì)調(diào)查局(USGS)提供的修正Mercalli量表中的強(qiáng)度值及其相應(yīng)的影響描述。
表1.簡易版修正Mercalli強(qiáng)度量表
確定地震強(qiáng)度的方法有很多7。這些方法使用從以往地震中收集的數(shù)據(jù),創(chuàng)建自己的地震動(dòng)預(yù)測方程(GMPE)來預(yù)測強(qiáng)度值。推導(dǎo)出的方程式至少使用一個(gè)地震動(dòng)參數(shù)或地震動(dòng)參數(shù)的組合,即峰值地震動(dòng)位移(PGD)、峰值地震動(dòng)速度(PGV)和峰值地震動(dòng)加速度(PGA)。早期方程主要基于PGA,有幾種使用了PGV和PGD。雖然GMPE使用多個(gè)數(shù)據(jù)庫中的數(shù)據(jù)來建立相關(guān)性,但不同模型得出的值仍然差異很大。例如,使用Wald的GMPE,10 cm/s2的PGA值得出的MMI值為3.2。而根據(jù)Hershberger的GMPE,10 cm/s2的PGA值對應(yīng)的MMI值為4.43。請注意,大多數(shù)GMPE遵循冪律,MMI值每增加一級,PGA值需要指數(shù)式增加。式1給出了Wald和Hershberger創(chuàng)建的相關(guān)性方程。
式1顯示了地震動(dòng)預(yù)測方程:
日本氣象廳(JMA)設(shè)計(jì)了一種地震強(qiáng)度量表,它可以根據(jù)強(qiáng)運(yùn)動(dòng)三軸加速度數(shù)據(jù)來計(jì)算9。每個(gè)軸的加速度時(shí)間信號都信息傅立葉變換。圖2所示的帶通濾波器(由周期效應(yīng)濾波器、高截止和低截止濾波器組成)應(yīng)用于每個(gè)軸的頻率信號。圖中還給出了每個(gè)子過濾器的數(shù)學(xué)表示。
圖2.計(jì)算JMA強(qiáng)度所用加速度計(jì)輸出信號的帶通濾波器:(a) 周期效應(yīng)濾波器方程;(b) 高截止濾波器方程;(c) 低截止濾波器方程。9
對每個(gè)軸的濾波后頻率信號進(jìn)行傅立葉逆變換之后,計(jì)算所有三個(gè)軸的相應(yīng)時(shí)域信號矢量和的大小。累計(jì)持續(xù)0.3秒或更長時(shí)間的最高加速度值被指定為a0。然后使用式2從a0 計(jì)算儀器地震強(qiáng)度,即利用持續(xù)時(shí)間至少為0.3秒的最高加速度求解JMA地震強(qiáng)度方程9。
地震頻譜強(qiáng)度
地震強(qiáng)度衡量特定位置感受到的地震的影響,而頻譜強(qiáng)度(SI)則衡量地震對特定結(jié)構(gòu)施加的破壞性能量的大小10。SI值利用式3所示方程根據(jù)速度響應(yīng)譜來計(jì)算。高剛性結(jié)構(gòu)的速度法向周期為1.5 s至2.5 s。SI值針對的是震動(dòng)速度譜,因此能夠輕松區(qū)分地震活動(dòng)與地震或其他來源。所以,SI值可以用作地震對建筑物結(jié)構(gòu)健康影響的標(biāo)準(zhǔn)。此外,與JMA地震強(qiáng)度相比,SI值涉及的計(jì)算較為簡單,這使其更適合低功率應(yīng)用。
式3給出了頻譜強(qiáng)度方程,即震動(dòng)速度響應(yīng)譜對建筑物法向速度周期的積分11。
地震震級
地震震級(簡稱震級)表示地震在震源處釋放的能量。其值不取決于測量位置。實(shí)際上,它只有一個(gè)真實(shí)值,即按照里氏量表指定的數(shù)字。有記錄的最強(qiáng)地震是1960年代襲擊智利瓦爾迪維亞的地震,震級為9.4至9.6。
地震震級與強(qiáng)度之間的相關(guān)性尚未完全界定清楚。明確界定二者之間的關(guān)系取決于許多因素,包括震源的深度、震源周圍的地質(zhì)組成、震中與測量設(shè)備之間的地形類型、設(shè)備位置或其距震中的距離等。例如,2017年5月發(fā)生在俄勒岡州海岸附近的地震被確定為4級。根據(jù)2017年7月的USGS震動(dòng)圖12,蒙大拿州感到的地震強(qiáng)度為5至6級,愛達(dá)荷州也感到了相同的地震,但強(qiáng)度只有2至3級。這表明,即使愛達(dá)荷州比蒙大拿州更靠近震中,但這并不一定意味著前者感到的地震影響會更強(qiáng)烈。
地震檢測
地震檢測是指測量和分析地震波的過程。地震波不僅指地震產(chǎn)生的運(yùn)動(dòng),施加在地面上的任何力,即便是人在地面上走路那么小的力,都可能引起足以產(chǎn)生地震波的擾動(dòng)。地震監(jiān)測應(yīng)用感興趣的地動(dòng)范圍非常大。地震產(chǎn)生的地動(dòng)可能像紙一樣薄,也可能像房屋一樣高。
地動(dòng)可以通過位移、速度和加速度來表征。地動(dòng)位移通過地球表面行進(jìn)的距離來衡量。位置變化可以是水平的,也可以是垂直的。地動(dòng)速度指地表面移動(dòng)的速度,而地動(dòng)加速度指地動(dòng)速度相對于時(shí)間的變化速度。地動(dòng)加速度是確定地震過程中引起結(jié)構(gòu)應(yīng)力的最重要因素。GeoSIG的一份演示材料中顯示了震級、地震動(dòng)和強(qiáng)度之間的關(guān)系13。
用于地震檢測的設(shè)備屬于專用設(shè)備。涉及地震檢測的應(yīng)用可以根據(jù)其頻率范圍進(jìn)行分類。因此,儀器的頻率響應(yīng)曲線必須適合其使用場景。GeoSIG的一張圖表顯示了不同地震檢測應(yīng)用及其涵蓋的頻率13。
現(xiàn)代地震儀和地震動(dòng)傳感器概述
地震檢測設(shè)備通常稱為地震儀,已經(jīng)從使用傳統(tǒng)的筆和擺錘發(fā)展到使用電子和機(jī)電傳感器。這些傳感器的設(shè)計(jì)進(jìn)步產(chǎn)生了具有不同工作頻率范圍、檢測機(jī)制和測量不同地震動(dòng)參數(shù)的儀器。
應(yīng)變地震儀
歷史上的地震儀器只能記錄地動(dòng)位移。技術(shù)的進(jìn)步使得通過不同機(jī)制來測量地動(dòng)位移成為可能。應(yīng)變地震儀或應(yīng)變儀一般是指記錄和測量兩個(gè)地面點(diǎn)之間位移的儀器14。傳統(tǒng)模型使用埋入或安裝在鉆孔中的實(shí)心桿。桿通常注入石英和其他對長度和應(yīng)變變化高度敏感的材料。長度的變化歸因于地動(dòng)引起的小位移。
另一種實(shí)現(xiàn)方式稱為體積應(yīng)變儀,它使用帶有充液管的安裝在鉆孔中的圓柱體15。容器體積的變形會引起液位變化,再通過電壓位移傳感器轉(zhuǎn)換為地動(dòng)位移。由于不需要傳統(tǒng)模型所需的特殊材料,體積應(yīng)變儀在該領(lǐng)域得到了更廣泛的應(yīng)用。
激光技術(shù)的最新發(fā)展使得人們制作出了激光干涉儀,它大大提高了應(yīng)變儀的精度。此類應(yīng)變儀使用與不等臂長邁克爾遜干涉儀相同的原理,一點(diǎn)是傳感器、激光源和短臂,另一點(diǎn)是反射器,該反射器位于一定距離之外。設(shè)備將反射器運(yùn)動(dòng)引起的干涉條紋變化轉(zhuǎn)換為地動(dòng)位移。這種位移測量方法的靈敏度和精度與測量距離的長度成正比。因此,激光應(yīng)變儀需要非常深的地下設(shè)施。
應(yīng)變儀的精度可以達(dá)到十億分之一。這些設(shè)備通常用于測量斷層運(yùn)動(dòng)和火山活動(dòng)引起的地球變形或地殼運(yùn)動(dòng)。它們可以測量頻率非常低的地震波信號。但是,與懸吊質(zhì)量塊相對于地面的運(yùn)動(dòng)相比,應(yīng)變儀的差分地面運(yùn)動(dòng)非常小。因此,不建議使用應(yīng)變儀來檢測地震引起的地面運(yùn)動(dòng)3。
慣性地震儀
慣性地震儀確定相對于慣性參考的地動(dòng)參數(shù),慣性參考通常是一個(gè)懸吊質(zhì)量塊3。具體來說,地震動(dòng)參數(shù)指的是懸吊質(zhì)量塊的線速度和位移。雖然合成的地震動(dòng)包括線性和角度分量,但地震波的旋轉(zhuǎn)效應(yīng)可以忽略不計(jì)。這些速度和位移值是從傳感器獲得的,傳感器將懸吊質(zhì)量塊的運(yùn)動(dòng)轉(zhuǎn)換為電信號??刂七\(yùn)動(dòng)的機(jī)械懸架與作用在懸吊質(zhì)量塊上的慣性力相關(guān)。速度和位移傳感器與機(jī)械懸架是慣性地震儀的兩個(gè)主要組成部分。為這兩個(gè)部分開發(fā)精密儀器是現(xiàn)代慣性地震儀的主要設(shè)計(jì)工作。
力平衡加速度計(jì)
機(jī)械懸架需要一個(gè)較小的恢復(fù)力以提高靈敏度,這樣較小的加速度也能在懸吊質(zhì)量塊上產(chǎn)生較大位移。但是,當(dāng)強(qiáng)地震運(yùn)動(dòng)產(chǎn)生的大加速度作用于懸吊質(zhì)量塊時(shí),較小恢復(fù)力將無法平衡所產(chǎn)生的運(yùn)動(dòng)。因此,被動(dòng)機(jī)械懸架的精度和靈敏度只適用于有限范圍的地震動(dòng)加速度。力平衡加速度計(jì)(FBA)通過向機(jī)械懸架增加負(fù)反饋環(huán)路來消除此限制。
電磁傳感器根據(jù)懸吊質(zhì)量塊的位置產(chǎn)生補(bǔ)償力。該位置由位移傳感器轉(zhuǎn)換為電信號,信號隨后通過一個(gè)積分器模塊,產(chǎn)生與地震動(dòng)加速度成比例的輸出電壓。FBA的動(dòng)態(tài)范圍明顯大于采用被動(dòng)機(jī)械懸架的地震儀。因此,該設(shè)備通常用于強(qiáng)地震應(yīng)用。但是,反饋環(huán)路引起的延遲會限制設(shè)備的帶寬。
速度寬帶(VBB)地震儀
車輛運(yùn)動(dòng)和人為擾動(dòng)(例如采礦)引起的地震波具有高頻地震動(dòng)加速度。在非常低的頻率下,地動(dòng)加速度以不平衡的懸架、地面傾斜和熱效應(yīng)為主。因此,使用地震動(dòng)加速度的地震儀的帶寬以具體帶通響應(yīng)為限。地震動(dòng)加速度的帶通響應(yīng)等效于地震動(dòng)速度的高通響應(yīng)。因此,為了獲得更寬的地震儀帶寬,地震信號是以地震動(dòng)速度記錄的。VBB地震儀基于FBA,但不是將懸吊質(zhì)量塊的加速度作為反饋,而是使用其速度和位置。該設(shè)備的響應(yīng)與傳統(tǒng)慣性地震儀的理論響應(yīng)非常相似,但是對于更廣泛的作用力,其靈敏度和精度不會降低。
地震檢波器和微機(jī)電系統(tǒng)(MEMS)加速度計(jì)
日益增多的地震應(yīng)用的趨勢是發(fā)展地震儀或地震傳感器網(wǎng)絡(luò)和陣列,例如用于地震監(jiān)測、石油勘探和結(jié)構(gòu)健康監(jiān)測方面。地震儀的實(shí)施、屏蔽和安裝是這些應(yīng)用的三個(gè)常見約束條件。設(shè)備的規(guī)模生產(chǎn)和快速部署能夠直接克服這三個(gè)常見限制,為此要求地震儀的尺寸和成本相應(yīng)地縮減。當(dāng)前有兩類傳感器技術(shù)能夠檢測地震動(dòng);與FBA和VBB相比,它們的尺寸非常小,而且成本低。
地震檢波器
地震檢波器是一種地震動(dòng)速度傳感器,其重量輕,堅(jiān)固耐用,不需要任何電源即可工作?,F(xiàn)代地震檢波器的外殼上固定有一塊磁鐵,并被一個(gè)線圈包圍16。線圈被彈簧懸掛起來,可以在磁體上移動(dòng)。此運(yùn)動(dòng)相對于磁鐵的速度會感生一個(gè)輸出電壓信號。
圖3所示為4.5 Hz地震檢波器的仿真頻率響應(yīng)。對于高于其諧振頻率的頻率范圍,地震檢波器的頻率響應(yīng)在速度上是平坦的,而對于此頻率以下的頻率則是下降的。小型且低成本的地震檢波器的諧振頻率通常高于4.5 Hz。
圖3.仿真4.5 Hz地震檢波器頻率響應(yīng),阻尼系數(shù)為0.56
根據(jù)地震檢波器的機(jī)械規(guī)格可以創(chuàng)建等效電氣模型。圖4顯示了使用SM-6 4.5 Hz地震檢波器的機(jī)械參數(shù)的電氣模型。17
圖4.使用產(chǎn)品數(shù)據(jù)表中的機(jī)械參數(shù)得出的SM-6 4.5 Hz地震檢波器的等效電氣模型17
為了擴(kuò)展帶寬以覆蓋適用于地震檢測的較低頻率,可以使用周期擴(kuò)展器。低頻響應(yīng)擴(kuò)展的三種最常見方法是逆濾波器、正反饋和負(fù)反饋。18
評論