新聞中心

EEPW首頁 > 模擬技術 > 設計應用 > 一階電路的零狀態(tài)響應

一階電路的零狀態(tài)響應

作者: 時間:2011-07-17 來源:網絡 收藏
一階電路的零狀態(tài)響應

當所有的儲能元件均沒有初始儲能,電路處于零初始狀態(tài)情況下,外加激勵在電路中產生的響應稱為零狀態(tài)響應。

下面分別討論激勵為直流、正弦交流情況下,、電路的零狀態(tài)響應。

一、直流激勵下的零狀態(tài)響應。

1、串聯電路

如圖8-5-1所示,開關S原置于位置2,電路已達穩(wěn)態(tài),即,電容上無初始儲能。在時刻,開關S由2切換至1,電路接通直流電壓源,求換路后的零狀態(tài)響應、、。

圖8-5-1

,開關S切換至1,由得:

(式8-5-1)

這是一個一階線性常系數非齊次微分方程。由微分方程求解的知識得,特解:

齊次方程的通解:

全解為:

(式8-5-2)

根據換路定則:

由(式8-5-2):

因此:

最終求得:

(式8-5-3)

(式8-5-4)

(式8-5-5)

根據(式8-5-3)—(式8-5-5),畫出零狀態(tài)響應、隨時間變化的曲線,如圖8-5-2所示。

圖8-5-2

在圖8-5-1所示電路中,當后,電壓源對電容充電。電容從初始電壓為零逐漸增大,最終充電至穩(wěn)態(tài)電壓,而電流則從初始值逐漸減小,最終衰減至穩(wěn)態(tài)值零。

2、串聯電路。

如圖8-5-3所示,開關S置于位置2,電路已達穩(wěn)態(tài),即,電感L上無初始儲能。在時刻,開關S由2切換至1,電路接通直流電壓源,求換路后的零狀態(tài)響應、。

圖8-5-3

后,開關S切換至1,由得:

(式8-5-6)

(式8-5-6)是一個一階線性常系數非齊次微分方程。該方程的全解是特解和齊次方程的通解之和,即:

(式8-5-7)

表示全解,表示特解,表示通解。換路后電路達到新的穩(wěn)定狀態(tài)的穩(wěn)態(tài)電流就是特解,即:

(式8-5-8)

其通解為:

(式8-5-9)

于是,全解為:

(式8-5-10)

(式8-5-10)中的積分常數A由初始條件確定。在時刻,根據換路定則:

由(式8-5-10):

因此:

最終得到:

(式8-5-11)

(式8-5-12)

(式8-5-13)

顯然,,滿足。圖8-5-4繪出了零狀態(tài)響應、的曲線。

圖8-5-4

二、正弦交流激勵下的零狀態(tài)響應

1、串聯電路

仍以圖8-5-1所示電路為例,將直流電壓源改為正弦交流電壓源,當后,由得到電路的微分方程為:

(式8-5-14)

的全解等于特解和通解之和,即:

由于激勵是正弦交流激勵,即為穩(wěn)態(tài)分量,即為暫態(tài)分量。穩(wěn)態(tài)分量可利用相量計算:

式中 :

暫態(tài)分量仍為,于是全解為:

(式8-5-15)

時刻,根據換路定則,確定積分常數:

由(式8-5-15):

最終得到:

(式8-5-16)

(式8-5-17)

(式8-5-18)

(式8-5-16)~(式8-5-18)說明電源的初相角對暫態(tài)分量的大小有影響,通常稱為接通角。當時,電容電壓的暫態(tài)分量為最大。從(式8-5-16)不難看出,電容過渡電壓的最大值無論如何不會超過穩(wěn)態(tài)電壓幅值的兩倍。但是從(式8-5-17)可以看出,在某些情況下,過渡電流的最大值將大大超過穩(wěn)態(tài)電流的幅值

2、RL串聯電路

仍以圖8-5-3所示電路為例,將直流電壓源改為正弦交流電壓源,當后,由KVL得到電路的微分方程為:

(式8-5-19)

初始條件仍是。如前所述,非齊次微分方程的全解是特解與通解之和,即:

(式8-5-19)右邊是正弦函數,特解也是正弦函數,特解就是正弦交流激勵下的穩(wěn)態(tài)電流,可用相量求解:

式中:

,

(式8-5-20)

暫態(tài)電流仍為:

(式8-5-21)

于是全解為:

(式8-5-22)

根據換路定則:

由(式8-5-22):

因而:

最終得到:

(式8-5-23)

(式8-5-24)

(式8-5-25)



評論


相關推薦

技術專區(qū)

關閉