紅外探測(cè)器原理及分類
1.2.1熱探測(cè)器熱探測(cè)器吸收紅外輻射后,溫度升高,可以使探測(cè)材料產(chǎn)生溫差電動(dòng)勢(shì)、電阻率變化,自發(fā)極化強(qiáng)度變化,或者氣體體積與壓強(qiáng)變化等,測(cè)量這些物理性能的變化就可以測(cè)定被吸收的紅外輻射能量或功率。分別利用上述不同性能可制成多種熱探測(cè)器:
(1) 液態(tài)的水銀溫度計(jì)及氣動(dòng)的高萊池(Golay cell):利用了材料的熱脹冷縮效應(yīng)。
(2) 熱電偶和熱電堆:利用了溫度梯度可使不同材料間產(chǎn)生溫差電動(dòng)勢(shì)的溫差電效應(yīng)。
(3) 石英共振器非制冷紅外成像列陣:利用共振頻率對(duì)溫度敏感的原理來實(shí)現(xiàn)紅外探測(cè)。
(4)測(cè)輻射熱計(jì):利用材料的電阻或介電常數(shù)的熱敏效應(yīng)—輻射引起溫升改變材料電阻—用以探測(cè)熱輻射。因半導(dǎo)體電阻有高的溫度系數(shù)而應(yīng)用最多,測(cè)溫輻射熱計(jì)常稱“熱敏電阻”。另外,由于高溫超導(dǎo)材料出現(xiàn),利用轉(zhuǎn)變溫度附近電阻陡變的超導(dǎo)探測(cè)器引起重視。如果室溫超導(dǎo)成為現(xiàn)實(shí),將是21世紀(jì)最引人注目的一類探測(cè)器;
(5) 熱釋電探測(cè)器:有些晶體,如硫酸三甘酞、鈮酸鍶鋇等,當(dāng)受到紅外輻射照射溫度升高時(shí),引起自發(fā)極化強(qiáng)度變化,結(jié)果在垂直于自發(fā)極化方向的晶體兩個(gè)外表面之間產(chǎn)生微小電壓,由此能測(cè)量紅外輻射的功率。
1.2.2光子探測(cè)器光子探測(cè)器吸收光子后,本身發(fā)生電子狀態(tài)的改變,從而引起內(nèi)光電效應(yīng)和外光電效應(yīng)等光子效應(yīng),從光子效應(yīng)的大小可以測(cè)定被吸收的光子數(shù)。
(1)光電導(dǎo)探測(cè)器:又稱光敏電阻。半導(dǎo)體吸收能量足夠大的光子后,體內(nèi)一些載流子從束縛態(tài)轉(zhuǎn)變?yōu)樽杂蓱B(tài),從而使半導(dǎo)體電導(dǎo)率增大,這種現(xiàn)象稱為光電導(dǎo)效應(yīng)。利用光電導(dǎo)效應(yīng)制成的光電導(dǎo)探測(cè)器分為多晶薄膜型和單晶型兩種。
(2)光伏探測(cè)器:主要利用p-n結(jié)的光生伏特效應(yīng)。能量大于禁帶寬度的紅外光子在結(jié)區(qū)及其附近激發(fā)電子空穴對(duì)。存在的結(jié)電場(chǎng)使空穴進(jìn)入p區(qū),電子進(jìn)入n區(qū),兩部分出現(xiàn)電位差,外電路就有電壓或電流信號(hào)。與光電導(dǎo)探測(cè)器比較,光伏探測(cè)器背景限探測(cè)率大40%,不需要外加偏置電場(chǎng)和負(fù)載電阻,不消耗功率,有高的阻抗。
(3)光發(fā)射-Schottky勢(shì)壘探測(cè)器:金屬和半導(dǎo)體接觸,形成Schottky勢(shì)壘,紅外光子透過Si層被PtSi吸收,使電子獲得能量躍遷至費(fèi)米能級(jí),留下空穴越過勢(shì)壘進(jìn)入Si襯底,PtSi層的電子被收集,完成紅外探測(cè)。
(4)量子阱探測(cè)器(QWIP):將兩種半導(dǎo)體材料用人工方法薄層交替生長形成超晶格,在其界面有能帶突變,使得電子和空穴被限制在低勢(shì)能阱內(nèi),從而能量量子化形成量子阱。利用量子阱中能級(jí)電子躍遷原理可以做紅外探測(cè)器。因入射輻射中只有垂直于超晶格生長面的電極化矢量起作用,光子利用率低;量子阱中基態(tài)電子濃度受摻雜限制,量子效率不高;響應(yīng)光譜區(qū)窄;低溫要求苛刻。
評(píng)論