升壓型DCDC變換器電流環(huán)路補(bǔ)償設(shè)計
針對固定頻率峰值電流模式PWM升壓型DC-DC變換器。給出了一種結(jié)構(gòu)簡單、易于集成的電流環(huán)路補(bǔ)償電路的設(shè)計方法。該電路的斜坡產(chǎn)生電路可對片內(nèi)振蕩器充放電電容上的電壓作V/I轉(zhuǎn)換,其所得到的斜坡電流具有穩(wěn)定、斜率易于調(diào)節(jié)等特點;而電流采樣電路主體采用SENSEFET結(jié)合優(yōu)化的緩沖級和V/I轉(zhuǎn)換電路,從而在提高采樣精度的同時,還減小了損耗。整個電路可采用0.6 μm 15 V BCD工藝實現(xiàn)。通過Cadence Spectre進(jìn)行的仿真結(jié)果表明,該電路可有效地抑制亞諧波振蕩,采樣精度達(dá)到77.9%,補(bǔ)償斜率精度達(dá)到81.5%。
關(guān)鍵詞:斜坡補(bǔ)償;電流采樣;電流模式;V/I轉(zhuǎn)換
O 引言
固定頻率峰值電流模式PWM(Pulse WidthModulation) DC-DC變換器同傳統(tǒng)的電壓模式控制相比,具有瞬態(tài)響應(yīng)好,輸出精度高,帶載能力強(qiáng)等優(yōu)點,因而被廣泛應(yīng)用。作為重要的模擬單元,斜坡補(bǔ)償電路和電流采樣電路是電流模式PWM控制的根基,對電流模式控制中電流環(huán)路的穩(wěn)定性起著重要作用。
1 電路結(jié)構(gòu)
圖1所示是典型峰值電流模式PWM Boost DC-DC控制系統(tǒng)的結(jié)構(gòu)框圖。當(dāng)電壓外環(huán)的電壓反饋信號經(jīng)過誤差放大器放大得到的誤差信號VE送至PWM比較器后,將與電流內(nèi)環(huán)的一個變化的、其峰值代表輸出電感電流峰值的三角波或梯形尖角狀合成波信號VE比較,從而得到PWM脈沖關(guān)斷閾值。即:
在(1)式中:第一項為斜坡補(bǔ)償部分,用于保證電流環(huán)路的穩(wěn)定;第二項反映了電感電流的大小,通常由電流采樣電路產(chǎn)生;第三項用于產(chǎn)生一個固定的基礎(chǔ)電平,以為PWM比較器輸入端圖1 典型峰值電流模式PWMBoostDC—DC控制系統(tǒng)框圖提供一個合適的直流工作點。
因此,峰值電流模式控制不是用電壓誤差信號直接控制PWM脈沖寬度,而是通過控制峰值輸出端的電感電流大小,然后來間接地控制PWM脈沖寬度。
但是,電流模式的結(jié)構(gòu)決定了其應(yīng)用時存在電流內(nèi)環(huán)在占空比大于50%時的開環(huán)不穩(wěn)定現(xiàn)象、亞諧波振蕩、非理想的環(huán)路響應(yīng),以及容易受噪聲影響等幾個固有缺點。針對上述問題,在環(huán)路的補(bǔ)償方式上,除了電壓環(huán)路的RC串聯(lián)補(bǔ)償之外,還必須對電流環(huán)路進(jìn)行補(bǔ)償,以滿足電流環(huán)路的穩(wěn)定性要求。有效的解決方法是采用斜坡補(bǔ)償技術(shù),并在提高電流采樣精度的同時降低采樣損耗,以保證電流環(huán)路的穩(wěn)定。
本文利用對振蕩器充放電電容上的電壓作V/I轉(zhuǎn)換來得到穩(wěn)定且斜率易于調(diào)節(jié)的補(bǔ)償斜坡,同時采用功率SENSEFET作為采樣器件,并結(jié)合設(shè)計簡潔的V/I變換,使采樣系數(shù)不受溫度和工藝的影響,從而在得到較高精度采樣值的同時,還減低了損耗。
2 電路原理分析
2.1 斜坡補(bǔ)償
圖2給出了在誤差信號VE上疊加斜坡補(bǔ)償電壓的方法。VE為電壓反饋回路的誤差放大信號,實線波形為未加擾動的電感電流,虛線為疊加△I0擾動量的電感電流,D為占空比,m1、m2分別為采樣得到的等效電感電流的上升和續(xù)流斜率。
由圖2(a)、(b)可知,若沒有斜坡補(bǔ)償,在下一個周期,該擾動電流為:
而經(jīng)過n個周期后,由△I0引起的電流誤差△In為:
由式(3)可以看出,當(dāng)m2m1,即D50%時,電流誤差△In將逐漸趨于0,故系統(tǒng)穩(wěn)定;而當(dāng)m2>m1,即D>50%時,電流誤差△In將逐漸放大,從而導(dǎo)致系統(tǒng)不穩(wěn)定。
圖2(c)是D>50%時,疊加補(bǔ)償電壓后的電感電流波形。對于該波形,有:
顯然,要使環(huán)路穩(wěn)定,必須使△I1△Io,即滿足:
結(jié)合(5)和(6)兩個式子可以得到:
由此可見,當(dāng)時,可在最壞情況下(D=100%,即m2>>m1)滿足系統(tǒng)的開環(huán)穩(wěn)定性要求。
圖1所示的電路同時給出了在電流反饋電壓上疊加斜坡補(bǔ)償電壓的方法。通過比較分析可知,兩種補(bǔ)償方法在效果上是等效的,但是第二種方法中的電路實現(xiàn)相對更簡單,因此較為常用。
2.2 電流采樣原理與方法
傳統(tǒng)電流采樣方法是在開關(guān)管的電流通路上串接檢測電阻,這樣不僅降低了DC-DC轉(zhuǎn)換器的效率,而且對于傳統(tǒng)工藝來說,制作這樣的小電阻也很困難。為了彌補(bǔ)這些不足,本文在SENSEFET采樣方法的基礎(chǔ)上,加入了簡潔的V/I變換電路,從而形成了一種結(jié)構(gòu)簡單且精度較高的采樣電路,其電路主體如圖l中的采樣電路所示。其中MM為POWER FET,其寬長比設(shè)計的非常大,可以減小其導(dǎo)通阻抗(本電路的典型值為150 mΩ);Ms為SENSE FET;檢測電阻RSEN可利用工作在線性區(qū)MOS管的導(dǎo)通阻抗特性,使其寬長比與Ms相同,因此,導(dǎo)通阻抗與Ms的相等,記為RSEN。為了減小采樣損耗,一般必須使(W/L)MM(W/L)Ms。
設(shè)(W/L)Ms:(W/L)MM=n(n的取值一般不低于100),開關(guān)管電流為IM,則有:
采樣電壓VSEN經(jīng)過簡潔實用的V/I轉(zhuǎn)換電路后,可將其轉(zhuǎn)換成所需要的采樣電流信號ISEN,然后與斜坡電流信號ISLOPE在R∑進(jìn)行疊加,就可得到所需的電壓V∑。
3 改進(jìn)型電路設(shè)計
3.1 斜坡產(chǎn)生電路
圖3所示是一種改進(jìn)型斜坡產(chǎn)生電路,圖中,MP5、MP6為匹配的差分對管:Q1、Q2匹配(rCE(Q1)=rCE(Q2),為負(fù)載管,它們的發(fā)射極面積相等,為Q3的兩倍。負(fù)載管Q1、Q2采用三極管,可在高匹配性的同時大大減小噪聲影響。在Q2的集電極與基極之間加一個射極輸出的晶體管Q4,可以減小Q2和Q3基極電流對ID(MP6)的分流;而在Q2和Q3的基極與地之間加電阻R4,則可用來提高Q4的β。Vc為片內(nèi)振蕩器充放電電容上的鋸齒波電壓,Vc的變化范圍為V1-V2。其中V2和V1分別為振蕩器充放電的高、低設(shè)定電壓值。
此電路主要任務(wù)是將電容上的鋸齒波電壓轉(zhuǎn)換成所需要的斜坡電流。
3.2電流采樣電路
圖4所示為本系統(tǒng)中的電流采樣電路。該電流采樣電路由三部分組成:采樣電路、緩沖級電路和電壓/電流(V/I)轉(zhuǎn)換電路。其中采樣電路采樣得到反映電感電流的電壓VSEN后,可經(jīng)過優(yōu)化處理的緩沖級電路進(jìn)行電平平移,從而得到VSEN’,以避免采樣電壓受到后級電路的影響,即:
最后,VSEN’經(jīng)過V/I轉(zhuǎn)換電路,就可以轉(zhuǎn)換成所需要的電流信號ISEN,以便和ISLOPE進(jìn)行疊加。
因為圖4中的Q1和Q2匹配,偏置相同,所以Q1和Q2的發(fā)射極電壓近似相等,即:V2≈V3,因而可為v∑提供一個合適的直流電平。
4 仿真結(jié)果
采用0.6μm BCD工藝時,可對設(shè)計的電路進(jìn)行仿真驗證。仿真條件為供電電壓VIN=5 V,輸出電壓VOUT=13 V,負(fù)載電流為500 mA。由仿真條件可知,占空比D>50%,但必須引入斜坡補(bǔ)償以保證電流環(huán)路的穩(wěn)定。
圖5所示是整體電路在典型情況下(D>50%),加入斜坡補(bǔ)償?shù)姆抡娌ㄐ?。其中,圖5(a)是電感實際的電流波形。其電感電流峰值為Iinductor_PEAK=1.796 A;圖5(b)是采樣得到的電感電流波形,其采樣電感電流峰值為Isensc_PEAK=10.505μA。
由于設(shè)計中的典型值R2=R3=10 kΩ,RDS(MM)=150 mΩ,RDS(MS)=15 Ω,n=100,故其電流采樣系數(shù)α為:7.5x10-6,采樣精度為77.9%。
圖5(c)是斜坡補(bǔ)償電路產(chǎn)生的斜坡電流波形,實測的補(bǔ)償斜坡的斜率為5.487 A/s,時鐘CLK為1.2 MHz,占空比為85.7%,T1=685.563 ns。由于本設(shè)計中的典型值為:
V1=0.4 V,V2=1 V,R=65 kΩ。
故可得其補(bǔ)償斜坡的斜率為:m=6.732 A/s。
因此可知,本設(shè)計的補(bǔ)償斜坡已經(jīng)達(dá)到較高精度(81.5%),可以滿足設(shè)計要求;
dc相關(guān)文章:dc是什么
手機(jī)電池相關(guān)文章:手機(jī)電池修復(fù)
pwm相關(guān)文章:pwm是什么
電流傳感器相關(guān)文章:電流傳感器原理
評論