新聞中心

EEPW首頁 > 模擬技術(shù) > 設(shè)計(jì)應(yīng)用 > 高效率大功率適配器的研究

高效率大功率適配器的研究

作者: 時(shí)間:2011-03-18 來源:網(wǎng)絡(luò) 收藏

隨著技術(shù)的發(fā)展,電腦CPU的工作頻率越來越高,其信息處理能力及各方面功能越來越強(qiáng),這樣就要求為之供電的適配器功率相應(yīng)較大。目前DELL等公司已為其生產(chǎn)銷售的移動(dòng)PC、筆記本電腦,向電源生產(chǎn)商提出了150W甚至200W適配器的供貨要求。對(duì)于如此大功率適配器,從安全角度考慮,要求適配器的密封性能要好;為便于攜帶,同時(shí)又希望適配器的體積小。但這些要求卻不利于適配器的散熱(由于損耗所產(chǎn)生的熱量),為此必須采用高效率、低損耗的解決方法。

針對(duì)下一代大功率筆記本電腦適配器,本文提出了一種高效率的拓?fù)浣Y(jié)構(gòu),并分析研究了其電路工作原理,最后給出了電路參數(shù)的選取方法和實(shí)驗(yàn)結(jié)果。

2 工作原理

筆記本電腦適配器是一種高質(zhì)量直流輸出電源,一般要求它具有寬的交流輸入電壓范圍:90V~264V,并且能夠適應(yīng)輸入電壓頻率的波動(dòng):47Hz~63Hz。對(duì)于輸入功率大于75瓦的適配器,還要求其輸入電流諧波滿足IEC-1000-3-2 Class D標(biāo)準(zhǔn),為此適配器須有功率因數(shù)校正(PFC)功能。

本文介紹的大功率150瓦筆記本電腦適配器,其輸出電壓:直流12V;電壓調(diào)整率:£ ±5%;額定輸出電流:12.5A。為滿足高功率密度及低成本等要求,經(jīng)綜合考慮,該適配器采用兩級(jí)電路架構(gòu),如圖1所示。前級(jí)PFC是升壓Boost變換器結(jié)構(gòu),采用電流臨界斷續(xù)模式(DCMB )控制;后級(jí)直流變換DC/DC部分采用雙管正激變換器并對(duì)二次側(cè)實(shí)行同步整流。

圖1 適配器的電路結(jié)構(gòu)

2.1 功率因數(shù)校正(PFC)電路

由圖1可知,交流輸入電壓Vi經(jīng)整流橋CR1、輸入濾波器L1、C1后,通過電感L2、開關(guān)S1、二極管D1組成的Boost 電路變換為直流母線輸出電壓VB。

圖2 PFC電流臨界斷續(xù)模式控制原理時(shí)序

PFC工作原理時(shí)序[1],如圖2所示。PFC輸出電壓VB的反饋信號(hào)與PFC控制芯片(如ST公司L6561)內(nèi)部基準(zhǔn)信號(hào)比較后,產(chǎn)生一電壓誤差信號(hào);在誤差的帶寬足夠低時(shí)(如20Hz以下),該電壓誤差信號(hào)就是一個(gè)直流量;此信號(hào)和輸入整流電壓相乘后,得到PFC電感峰值電流基準(zhǔn)信號(hào)(見圖2)。開關(guān)S1開通后,PFC電感電流iL2線形上升,達(dá)到峰值電流基準(zhǔn)時(shí),S1關(guān)斷;隨后iL2通過二極管D1續(xù)流,同時(shí)向電容C2充電,在電壓VB的壓迫下,iL2線形下降;當(dāng)PFC控制芯片檢測(cè)到電感電流iL2為零時(shí),開關(guān)S1將再次開通,開始下一個(gè)開關(guān)周期。電感電流iL2經(jīng)輸入濾波器L1、C1濾波,得到連續(xù)光滑的正弦輸入電流,即圖2中所示的平均電流,其值為PFC電感峰值電流基準(zhǔn)的一半。

由于開關(guān)S1是在電流iL2為零時(shí)開通的,故開關(guān)S1是零電流開通(ZCS),因此PFC的開關(guān)損耗大為減少;另外由于S1開通時(shí),二極管D1的電流已經(jīng)為零,所以D1的反向恢復(fù)問題也得到解決,由反向恢復(fù)引起的損耗將不存在, D1用普通的二極管即可。因控制簡(jiǎn)單,PFC可采用低成本的控制芯片。

由上分析可知,電流臨界斷續(xù)模式控制的 PFC不僅變換效率高,而且還具有控制簡(jiǎn)單、成本低等優(yōu)點(diǎn)。

2.2 雙管正激DC/DC直流變換電路

為將較高的直流母線電壓VB(約390V)變換成較低的適配器輸出電壓Vo(12V),DC/DC部分采用了雙管正激直流變換器,它由開關(guān)管S2、S3、續(xù)流二極管D2、D3、變壓器Tr、同步整流管S4、同步續(xù)流管S5、輸出濾波器Lo、Co構(gòu)成(參看圖1)。變壓器的作用是實(shí)現(xiàn)原、副邊隔離及輸入、輸出電壓匹配。

圖3 雙管正激直流變換器控制原理時(shí)序

雙管正激直流變換器的控制原理時(shí)序,見圖3所示(以濾波電感電流iLo連續(xù)為例)。為分析方便,假定開關(guān)管S2、S3的漏源電容為零,這樣其漏源電壓就能夠瞬時(shí)變化。其中Vgs2、Vgs3分別是S2、S3的控制信號(hào),兩者時(shí)序完全相同。

t0~t1:t0時(shí)刻,S2、S3同時(shí)開通,變壓器Tr原邊繞組EF的電壓為VB,即VEF=VB,則副邊電壓VGH=VB*N2/N1,輸出濾波電感Lo中的電流iLo經(jīng)電感Lo、電容Co(包括負(fù)載)、同步整流管S4、變壓器副邊繞組HG流通,電感Lo的前端電壓VG=VGH=VB*N2/N1。由于此時(shí)VG大于適配器輸出電壓Vo,故iLo從iLomin線形上升到iLomax。

t1~t2:t1時(shí)刻,S2、S3同時(shí)關(guān)斷,變壓器原邊繞組電流經(jīng)二極管D2、D3續(xù)流,同時(shí)變壓器進(jìn)行磁復(fù)位,此時(shí)VEF=-VB,副邊電壓VGH=-VB*N2/N1,S2、S3的漏源電壓VDS2=VDS3=VB;iLo經(jīng)電感Lo、電容Co(包括負(fù)載)、同步續(xù)流管S5流通,Lo的前端電壓VG=0。由于VG小于輸出電壓Vo,故iLo從iLomax線形下降。

t2~t3:t2時(shí)刻,變壓器原邊繞組電流續(xù)流完畢且磁復(fù)位結(jié)束,S2、S3仍然關(guān)斷,此時(shí)VEF=0,原邊電壓由開關(guān)S2、S3分擔(dān),即VDS2=VDS3=VB/2(假定S2、S3型號(hào)相同),這樣開關(guān)S2、S3在下一次開通時(shí)的損耗就大大降低了。副邊電壓VGH=0,iLo經(jīng)電感Lo、電容Co(包括負(fù)載)、同步續(xù)流管S5流通。T3時(shí)刻,iLo線形下降至iLomin后,S2、S3同時(shí)開通,開始下一個(gè)開關(guān)周期。

為提高效率,用開關(guān)管S4、S5代替二極管以減低二次側(cè)的導(dǎo)通損耗。同步整流管S4的導(dǎo)通時(shí)間和開關(guān)S2、S3的導(dǎo)通時(shí)間同步,同步續(xù)流管S5的導(dǎo)通時(shí)間和開關(guān)S2、S3的關(guān)斷時(shí)間同步。為保證變壓器可靠復(fù)位,雙管正激直流變換器的最大占空比應(yīng)小于0.5。

3 參數(shù)選擇和試驗(yàn)結(jié)果

3.1 參數(shù)選擇

本文研制的150瓦筆記本電腦適配器,其中PFC控制芯片采用ST公司生產(chǎn)的L6561,其價(jià)格較低,外圍控制電路所用元器件少;設(shè)定PFC的輸出電壓VB=390V(略大于最大輸入電壓的幅值);PFC其他器件參數(shù)如下:

共模濾波電感(圖1中未畫出):LFZ2805V08;

差模濾波電感L1:73uH;PFC Boost電感L2:165uH;

全波整流橋CR1:RBV-406;二極管D1:8ETH06;

開關(guān)管S1:ST公司STP12NM50FP,12A/500V,Rds=0.30W(Typ);

輸入濾波電容C1:1uF/400V;直流母線輸出濾波電容C2:100uF/400V。

雙管正激直流變換器的控制芯片采用價(jià)格便宜的UC3845;考慮到負(fù)載動(dòng)態(tài)響應(yīng)要求及輸出阻抗,設(shè)定滿載時(shí)占空比為0.38;變壓器原、副邊匝比為N1:N2=56:5,選用philips公司生產(chǎn)的鐵芯EFD30-3F3;其他器件參數(shù)如下:

原邊開關(guān)管S2、S3:STP12NM50FP;續(xù)流二極管D2、D3:MUR160;

副邊開關(guān)管S4、S5:Fairchild公司FDP038AN06A0, 3.8mW/80A/60V;

輸出濾波電容Co:Rubycon ZL series,1500uF/16V;

輸出濾波電感Lo:20uH;開關(guān)頻率:180k Hz。

3.2 試驗(yàn)結(jié)果

圖4為Vi=90V時(shí)PFC滿載輸入電壓及輸入電流試驗(yàn)波形,可以看出輸入電流波形的正弦性好,經(jīng)測(cè)定功率因數(shù)PF值大于0.99;圖5為雙管正激直流變換器輸出濾波電感前端電壓VG、原邊下管S3漏源電壓VDS3的試驗(yàn)波形,由圖可知在原邊開關(guān)管S2、S3開通前,S3的漏源電壓VDS3=VB/2。由于S2、S3的漏源電容實(shí)際不為零,VDS3(以及VDS2)從VB下降到VB/2是通過其漏源電容和變壓器激磁電感諧振來完成的,故VDS3下降(從VB到VB/2)需要一定的時(shí)間,并具有一定的斜率。

圖4 PFC滿載90V時(shí)輸入電壓、輸入電流試驗(yàn)波形 圖5 DC/DC輸出電感前端電壓、原邊下管漏源電壓試驗(yàn)波形

圖6為PFC在不同輸入電壓下的滿載效率曲線(不包括控制損耗),該效率隨輸入電壓的升高而升高,在90V時(shí)最低,但也高達(dá)95.08%;圖7為DC/DC變換器在不同輸出負(fù)載時(shí)的效率曲線(不包括控制損耗),其150W滿載時(shí)效率高達(dá)96.04%;圖8為不同輸入電壓下適配器的滿載效率曲線(包括控制損耗),滿載時(shí)適配器的整體效率超過90.80%,該效率曲線的特點(diǎn)也是隨輸入電壓的升高而升高,在230V時(shí)可高達(dá)93.57%。

圖6 不同輸入電壓下PFC滿載效率曲線

圖7 DC/DC不同輸出負(fù)載時(shí)的效率曲線

圖8 不同輸入電壓下適配器的滿載效率曲線

4 結(jié)論

本文研制的150瓦筆記本電腦適配器具有兩級(jí)電路拓?fù)浣Y(jié)構(gòu),前級(jí)PFC采用電流臨界斷續(xù)模式控制,后級(jí)DC/DC部分采用雙管正激變換器。PFC和DC/DC各自獨(dú)立,控制電路簡(jiǎn)單,成本相對(duì)低廉。適配器的整體效率高,滿載時(shí)超過90.80%。實(shí)


上一頁 1 2 下一頁

評(píng)論


相關(guān)推薦

技術(shù)專區(qū)

關(guān)閉