新聞中心

EEPW首頁 > 電源與新能源 > 設計應用 > 電力中的電子設備熱效應分析及應用

電力中的電子設備熱效應分析及應用

作者: 時間:2012-04-13 來源:網絡 收藏
9.3整機散熱設計

⑴ 確定整機的熱耗和分布。

⑵ 根據整機結構尺寸初步確定散熱設計方案。

⑶ 對確定的冷卻方式進行分析(如強迫風冷的風機數量,選型,級聯(lián)方式,風道尺寸,風量大小,控制方式等)。

⑷ 針對分析結果可利用熱分析軟件進一步驗證。

⑸ 對散熱方案進行調整進而最后確定。

本文引用地址:http://m.butianyuan.cn/article/230783.htm

9.4 機殼的熱設計

的機殼是接受設備內部熱量,并通過它將熱量散發(fā)到周圍環(huán)境中去的一個重要熱傳遞環(huán)節(jié)。機殼的設計在采用自然散熱和一些密閉式的中顯得格外重要。試驗表明,不同結構形式和涂覆處理的機殼散熱效果差異較大。機殼熱設計應注意下列問題:

(1)增加機殼內外表面的黑度,開通風孔(百葉窗)等都能降低內部元器件的溫度;

(2)機殼內外表面高黑度的散熱效果比兩測開百葉窗的自然對流效果好,內外表面高黑度時,內部平均降溫20℃左右,而兩側開百葉窗時(內外表面光亮),其溫度只降8℃左右;

(3)機殼內外表面高黑度的降溫效果比單面高黑度的效果好,特別是提高外表面黑度是降低機殼表面溫度的有效辦法;

(4)在機殼內外表面黑化的基礎上,合理地改進通風結構(如頂板、底板、左右兩側板開通風孔等),加強空氣對流,可以明顯地降低設備的內部溫度環(huán)境;

(5)通風口的位置應注意氣流短路而影響散熱效果,通風孔的進出口應開在溫差最大的兩處,進風口要低,出風口要高。風口要接近發(fā)熱元件,是冷空氣直接起到冷卻元件的作用;

(6)在自然散熱時,通風孔面積的計算至關重要,圖3示出了通風孔面積與散熱量的關系,可供設計通風口時作依據,亦可根據設備需要由通風口的散熱量用下式計算通風孔的面積。
S0=Q/7.4×10-5·H · △t1. 5 (4)
式中:
S0——進風口或出風口的總面積〔cm2〕;
Q——通風孔自然散熱的熱量〔設備的總功耗減去壁面自然對流和輻射散去的熱量〕〔W〕;
H——進出風口的高度差〔cm〕;
△t ==t2-t1——設備內部空氣溫度t2與外部空氣溫度t1之差〔0C〕。

(7)通風口的結構形式很多,有金屬網,百葉窗等等,設計時要根據散熱需要,既要使其結構簡單,不易落灰,又要能滿足強度,電磁兼容性要求和美觀大方。

(8)密封機殼的散熱主要靠對流和輻射,決定于機殼表面積和黑度,可以通過減小發(fā)熱器件與機殼的傳導熱阻,加強內部空氣對流(如風機)增加機殼表面積(設散熱筋片)和機殼表面黑度等來降低內部環(huán)境溫度。

電力中的電子設備熱效應分析及應用
圖3 自然散熱時通風孔面積和散熱量的關系


9.5強迫風冷設計

當自然冷卻不能解決問題時,需要用強迫空氣冷卻,即強迫風冷。強迫風冷是利用風機進行鼓風或抽風,提高設備內空氣流動速度,達到散熱的目的。強迫風冷的散熱形式主要是對流散熱,其冷卻介質是空氣。強迫風冷在中、大功率的電子設備中應用較廣范,因為它具有比自然冷卻多幾倍的熱轉移能力,與其他形式的強迫冷卻相比具有結構簡單,費用較低,維護簡便等優(yōu)點。



評論


相關推薦

技術專區(qū)

關閉