新聞中心

EEPW首頁 > 嵌入式系統(tǒng) > 設計應用 > 全面剖析數(shù)字電路中的復位設計

全面剖析數(shù)字電路中的復位設計

作者: 時間:2014-06-05 來源:網(wǎng)絡 收藏

隨著數(shù)字化設計和的日益復雜,架構也變得非常復雜。在實施如此復雜的架構時,設計人員往往會犯一些低級錯誤,這些錯誤可能會導致亞穩(wěn)態(tài)、干擾或其他系統(tǒng)功能故障。本文討論了一些設計的基本的結構性問題。在每個問題的最后,都提出了一些解決方案。

本文引用地址:http://m.butianyuan.cn/article/247850.htm

域交叉問題

1. 問題

在一個連續(xù)設計中,如果源寄存器的異步復位不同于目標寄存器的復位,并且在起點寄存器的復位斷言過程中目標寄存器的數(shù)據(jù)輸入發(fā)生異步變化,那么該路徑將被視為異步路徑,盡管源寄存器和目標寄存器都位于同一個時鐘域,在源寄存器的復位斷言過程中可能導致目標寄存器出現(xiàn)亞穩(wěn)態(tài)。這被稱為復位域交叉,其中啟動和捕捉觸發(fā)的復位是不同的。

在這種情況下,C寄存器和A寄存器的起點異步復位斷言是不同的。在C寄存器復位斷言過程中而A觸發(fā)器沒有復位,如果A寄存器的輸入端有一些有效數(shù)據(jù)交易,那么C寄存器的起點異步復位斷言引起的異步變更可能導致目標A寄存器發(fā)生時序違規(guī),從而可能產(chǎn)生亞穩(wěn)態(tài)。

 

 

圖1:復位域交叉問題

在上面的時序圖中,當有一些有效數(shù)據(jù)交易通過C1進行時,rst_c_b獲得斷言,導致C1發(fā)生異步改變,w.r.t clk從而使QC1進入亞穩(wěn)態(tài),這可能導致設計發(fā)生功能故障。

2. 解決方案

* 使用異步復位、不可復位觸發(fā)器或D1觸發(fā)器POR.

* 如果復位源rst_c_b是同步的,那么則認為來自C_CLR --> Q的用于從rst_c_b_reg -->C_CLR-->C_Q1-->C1-->A_D進行設置保持檢查的時序弧能夠避免設計亞穩(wěn)態(tài)。然而,通常在默認情況下 C_CLR-->Q時序弧在庫中不啟用,需要在定時分析過程中明確啟用。

* 在目的地(A)使用雙觸發(fā)器同步器,以避免設計中發(fā)生亞穩(wěn)態(tài)傳播。然而,設計人員應確保安裝兩個觸發(fā)器引入的延遲不會影響預期功能。

由于組合環(huán)路導致復位源干擾

1. 問題

中,全局系統(tǒng)復位在設備中組合了軟件或硬件生成的各種復位源。LVD復位、看門狗復位、調(diào)試復位、軟件復位、時鐘丟失復位是導致全局系統(tǒng)復位斷言的一些示例。 然而,如果由于任何復位源導致的全局復位斷言是完全異步的,且復位發(fā)生源邏輯被全局復位清零,那么設計中會產(chǎn)生組合環(huán)路,這會在該復位源產(chǎn)生干擾。組合路徑的傳播延遲會根據(jù)不同的流程、電壓或溫度以及干擾范圍而不同。如果設計中使用了組合信元用于復位斷言和去斷言,那么也會導致模擬中出現(xiàn)紊亂情況。這被視為設計人員的非常低級的錯誤。

 

 

圖2:復位源干擾(基本問題)

在上圖中,當復位源SW_Q斷言時,會導致rst_b斷言,這是全局復位?,F(xiàn)在,如果全局復位本身被用于清除 “SW_Q” 復位斷言,那么會在設計中在SW_Q輸出和全局復位時產(chǎn)生干擾。此外,在模擬中,這會導致紊亂情況,因為復位源斷言試圖通過該組合邏輯去斷言。

然而,如果復位源(SW_Q)在復位狀態(tài)機(觸發(fā)器的SET/CLR輸入)為全局復位斷言被異步使用,那么復位干擾可能能夠復位整個系統(tǒng)(通過斷言全局復位),因為全局系統(tǒng)復位去斷言不僅僅與復位源去斷言相關。當該復位源(有干擾)被同步使用或在觸發(fā)器D輸入使用的情況下可能依然有一個問題。干擾范圍可能無法在至少一個周期內(nèi)保持穩(wěn)定,因此這不會被目標觸發(fā)器捕獲。此外,該復位源不能被用作任何電路的時鐘(除了脈沖捕捉電路),因為它可能違反時鐘寬度。

 

 

圖3:復位源干擾(問題2)

在上圖中,復位源SW_Q將出現(xiàn)干擾。雖然如果復位源SW_Q的干擾在某個觸發(fā)器被捕捉作為復位事件狀態(tài)(在S)或用于其他目的,全局復位輸出(rst_b)都沒有干擾,但它將導致時序違反/亞穩(wěn)態(tài),或根本不可能被捕獲。

2. 解決方案

* 設計人員永遠都不應犯下上述(圖2)低級錯誤。

* 如果復位實現(xiàn)如圖3所示,那么設計人員應保證復位源(在該示例中為SW_Q)總是在觸發(fā)器的SET/CLR輸入使用,而不在D或CLK使用。

* 解決這個問題的最好的方法是在復位狀態(tài)機中使用之前注冊該復位源。 雖然它將導致時鐘依靠全局復位斷言,但是無論如何,如果沒有時鐘,該內(nèi)部復位(SW_Q)都不會斷言。請參見圖4.

 

 

圖4:解決方案1

此外,用戶也可以擴展SW_Q斷言,然后再在設計中使用它,復位斷言與時鐘無關。 請參見圖5.

 

 

圖5:解決方案2

復位路徑的組合邏輯

1. 問題(I)

如果組合邏輯輸入大約在同一時間發(fā)生變化,那么使用復位路徑中的組合邏輯可能產(chǎn)生干擾,這可能在設計中觸發(fā)虛假復位。下面是一個RTL代碼,它會在設計中意外復位。

assign module_a_rstb = !((slave_addr[7:0]==8‘h02 & write_enable & (wdata[7:0]==00))

always @(posedge clk or negedge module_rst_b)

if(!module_rst_b) data_q <= 1’b0;

else data_q <= data_d;

在上面的示例中,slave_addr,write_enable和wdata改變它們的值 w.r.t system clock,使用靜態(tài)時序分析,設計人員可以保證在目標觸發(fā)器的設置時間窗口之前這些信號在一個時鐘周期內(nèi)的穩(wěn)定性。然而,在該示例中,這些信號直接用作觸發(fā)器的異步清零輸入。

因此,即使在特定的時間slave_addr[7:0]在邏輯上將其值從“00000110”改為 “01100000”,但由于組合邏輯的傳播延遲(凈延遲和信元延遲)它可以用一個序列“00000110 --> 00000010 --> 00000000 --> 01000000 --> 01100000”生成過渡。

在這段時間里,salve_addr為“00000010”,如果wdata[7:0]始終為零且“write_enable” 已經(jīng)被斷言,那么它將在module_rst_b創(chuàng)建一個無用脈沖,從而導致虛假復位。

 

 

圖6:復位路徑的組合邏輯

2. 解決方案

首先注冊組合輸出,然后再將其用作復位源(如圖7所示)。

 

 

圖7:復位路徑的組合邏輯解決方案

3. 問題(II)

在上面的示例中,復位路徑的組合邏輯解決方案并不完善。如果組合邏輯輸入大約在同一時間發(fā)生變化,那么它可能在設計中觸發(fā)虛假復位。然而,如果組合邏輯的輸入信號變化相互排斥,那么它可能不會引起任何設計問題。例如,測試模式和功能模式相互排斥。因此復位路徑的測試復用是有效的設計實踐。

然而,對于某些情況,變化相互排斥的靜態(tài)信號或信號可能會導致設計出現(xiàn)虛假復位觸發(fā)。下面的示例描述了此類設計可能出現(xiàn)問題。

 

 

圖8:復位路徑的組合邏輯(問題 2)

在上面的示例中,多路復用結構用于復位路徑,同時進行RTL編碼。其中“mode” 是一個控制信號,不頻繁改變,而mode0_rst_b和mode_1_rst_b是兩個復位事件,然而在合成RTL時,在門控級它被分解成不同的復雜的組合(And-Or-Invert[AOI])信元。雖然在邏輯上它相當于一個多路復用器,但由于不同的信元和凈延遲,每當信號“mode”從 1-->0變化時,final_rst_b都會產(chǎn)生干擾。

數(shù)字濾波器相關文章:數(shù)字濾波器原理

上一頁 1 2 下一頁

關鍵詞: SoC 復位

評論


相關推薦

技術專區(qū)

關閉