LED 芯片封裝缺陷檢測方法及機理研究
1.3封裝缺陷的檢測方法
完成壓焊工序后,LED處于閉合短路狀態(tài),直接導(dǎo)出回路電流進(jìn)行檢測不可行。雖然支架回路有一定電阻,但光生電流只有微安量級,因而支架回路中的壓降非常小,用一般的電壓測量方法難度較大,而且接觸式檢測會引入接觸電阻,影響檢測的準(zhǔn)確性。因此,考慮用非接觸式的電流檢測方法。根據(jù)法拉第電磁感應(yīng)定律,利用引腳式LED自身特征,檢測時將帶磁芯線圈中磁芯的一端插入圖1所示閉合回路z中,LED支架回路作為一級繞組,帶磁芯線圈作為次級繞組,并在線圈的兩端并聯(lián)上電容C,與線圈L組成LC諧振回路。以交變的光激勵LED芯片時,支架回路中產(chǎn)生交變電流,交流載流回路會在周圍空間產(chǎn)生交變磁場,次級線圈交變磁場則在次級線圈中產(chǎn)生感生電動勢。若交變光頻率與LC諧振回路頻率相等時,LC回路發(fā)生共振,此時次級線圈兩端感生電動勢最大。因此,可以通過檢測次級線圈兩端感生電動勢間接達(dá)到檢測支架回路光電流的目的,實現(xiàn)對封裝工藝中芯片功能狀況及焊接質(zhì)量的檢測。
LC諧振回路中,線圈中磁芯起到增強磁感應(yīng)強度B的作用,從而增加檢測信號幅值。又線圈中磁芯的有效磁導(dǎo)率與相對磁導(dǎo)率間關(guān)系可表示為[14]:
式中,μe磁芯的有效磁導(dǎo)率,脅為磁芯的相對磁導(dǎo)率,μr為磁芯的有效磁路長度,名為非閉合氣隙長度。
由式(8)可以看出,影響有效磁導(dǎo)率脅從而影響磁感應(yīng)強度B的參數(shù)有:
?、俅判静牧系南鄬Υ艑?dǎo)率脅。與所選軟磁磁芯材料有關(guān)(軟磁材料初始相對磁導(dǎo)率一般大于1000),當(dāng)磁芯材料選定后,其相對磁導(dǎo)率為確定值。
?、诖判镜挠行чL度le、非閉合氣隙長度lg,它們由磁芯的結(jié)構(gòu)決定。微弱電流產(chǎn)生的磁場易受外界因素干擾,磁路越長,干擾越大,所以磁芯的有效長度宜短。
在磁芯材料確定的情況下,為了得到較大磁感應(yīng)強度B,需改變線圈中磁芯的結(jié)構(gòu)。若磁芯結(jié)構(gòu)設(shè)計為環(huán)形,由式(8)知,磁感應(yīng)強度B增大倍數(shù)理論上與磁芯的相對磁導(dǎo)率盧,大小相等,檢測信號幅值將達(dá)到最大。與條形磁芯同種材質(zhì)的u型磁芯上搭接一塊條形磁芯就構(gòu)成環(huán)形磁芯線圈,其搭接方式有兩種,如圖3示。
檢測時將繞有線圈的U型磁芯的一端插入圖1所示1閉合回路,感應(yīng)LED支架回路中回路電流產(chǎn)生的交變磁通,再將條形磁芯搭接在U型磁芯上,使感應(yīng)磁路閉合。由于搭接方式不同,兩種搭接方式的磁芯線圈處在支架回路所產(chǎn)生的交變磁場中時,其搭接處磁路也將不同,用Ansoft Maxwell軟件仿真兩種搭接方式的磁芯搭接處在交變磁場中的磁回路,結(jié)果如圖4示
圖4中(a)、(b)仿真結(jié)果對應(yīng)于圖3中(a)、(b)兩種線圈磁芯搭接方式。比較兩種線圈磁芯搭接處磁路仿真結(jié)果可以看出:①圖3(a)示磁芯搭接處磁路在空氣介質(zhì)中的回路最短,所受磁阻最小,因此磁損耗也最小。②由于待測LED支架回路電流為微安量級,激起的磁場較小,易受空間電磁場的干擾,圖3(b)示磁芯搭接處磁路暴露在空氣介質(zhì)中較多,受干擾的幾率較大。由上述分析,圖3(a)磁芯搭接方式較優(yōu),可以增強信號檢測端抑制干擾能力,增加檢測信號幅值,一定程度上提高光激勵檢測信號信噪比,進(jìn)而提高缺陷檢測精度。
評論