多線程編程之:Linux線程編程
(3)函數(shù)使用。
以下實(shí)例中創(chuàng)建了3個(gè)線程,為了更好地描述線程之間的并行執(zhí)行,讓3個(gè)線程重用同一個(gè)執(zhí)行函數(shù)。每個(gè)線程都有5次循環(huán)(可以看成5個(gè)小任務(wù)),每次循環(huán)之間會(huì)隨機(jī)等待1~10s的時(shí)間,意義在于模擬每個(gè)任務(wù)的到達(dá)時(shí)間是隨機(jī)的,并沒有任何特定規(guī)律。
/* thread.c */
#include stdio.h>
#include stdlib.h>
#include pthread.h>
#define THREAD_NUMBER 3 /*線程數(shù)*/
#define REPEAT_NUMBER 5 /*每個(gè)線程中的小任務(wù)數(shù)*/
#define DELAY_TIME_LEVELS 10.0 /*小任務(wù)之間的最大時(shí)間間隔*/
void *thrd_func(void *arg)
{ /* 線程函數(shù)例程 */
int thrd_num = (int)arg;
int delay_time = 0;
int count = 0;
printf(Thread %d is startingn, thrd_num);
for (count = 0; count REPEAT_NUMBER; count++)
{
delay_time = (int)(rand() * DELAY_TIME_LEVELS/(RAND_MAX)) + 1;
sleep(delay_time);
printf(tThread %d: job %d delay = %dn,
thrd_num, count, delay_time);
}
printf(Thread %d finishedn, thrd_num);
pthread_exit(NULL);
}
int main(void)
{
pthread_t thread[THREAD_NUMBER];
int no = 0, res;
void * thrd_ret;
srand(time(NULL));
for (no = 0; no THREAD_NUMBER; no++)
{
/* 創(chuàng)建多線程 */
res = pthread_create(thread[no], NULL, thrd_func, (void*)no);
if (res != 0)
{
printf(Create thread %d failedn, no);
exit(res);
}
}
printf(Create treads successn Waiting for threads to finish...n);
for (no = 0; no THREAD_NUMBER; no++)
{
/* 等待線程結(jié)束 */
res = pthread_join(thread[no], thrd_ret);
if (!res)
{
printf(Thread %d joinedn, no);
}
else
{
printf(Thread %d join failedn, no);
}
}
return 0;
}
以下是程序運(yùn)行結(jié)果。可以看出每個(gè)線程的運(yùn)行和結(jié)束是獨(dú)立與并行的。
$ ./thread
Create treads success
Waiting for threads to finish...
Thread 0 is starting
Thread 1 is starting
Thread 2 is starting
Thread 1: job 0 delay = 6
Thread 2: job 0 delay = 6
Thread 0: job 0 delay = 9
Thread 1: job 1 delay = 6
Thread 2: job 1 delay = 8
Thread 0: job 1 delay = 8
Thread 2: job 2 delay = 3
Thread 0: job 2 delay = 3
Thread 2: job 3 delay = 3
Thread 2: job 4 delay = 1
Thread 2 finished
Thread 1: job 2 delay = 10
Thread 1: job 3 delay = 4
Thread 1: job 4 delay = 1
Thread 1 finished
Thread 0: job 3 delay = 9
Thread 0: job 4 delay = 2
Thread 0 finished
Thread 0 joined
Thread 1 joined
Thread 2 joined
9.2.2 線程之間的同步與互斥
由于線程共享進(jìn)程的資源和地址空間,因此在對(duì)這些資源進(jìn)行操作時(shí),必須考慮到線程間資源訪問的同步與互斥問題。這里主要介紹POSIX中兩種線程同步機(jī)制,分別為互斥鎖和信號(hào)量。這兩個(gè)同步機(jī)制可以互相通過調(diào)用對(duì)方來(lái)實(shí)現(xiàn),但互斥鎖更適合用于同時(shí)可用的資源是惟一的情況;信號(hào)量更適合用于同時(shí)可用的資源為多個(gè)的情況。
1.互斥鎖線程控制
(1)函數(shù)說(shuō)明。
互斥鎖是用一種簡(jiǎn)單的加鎖方法來(lái)控制對(duì)共享資源的原子操作。這個(gè)互斥鎖只有兩種狀態(tài),也就是上鎖和解鎖,可以把互斥鎖看作某種意義上的全局變量。在同一時(shí)刻只能有一個(gè)線程掌握某個(gè)互斥鎖,擁有上鎖狀態(tài)的線程能夠?qū)蚕碣Y源進(jìn)行操作。若其他線程希望上鎖一個(gè)已經(jīng)被上鎖的互斥鎖,則該線程就會(huì)掛起,直到上鎖的線程釋放掉互斥鎖為止。可以說(shuō),這把互斥鎖保證讓每個(gè)線程對(duì)共享資源按順序進(jìn)行原子操作。
互斥鎖機(jī)制主要包括下面的基本函數(shù)。
n 互斥鎖初始化:pthread_mutex_init()
n 互斥鎖上鎖:pthread_mutex_lock()
n 互斥鎖判斷上鎖:pthread_mutex_trylock()
n 互斥鎖接鎖:pthread_mutex_unlock()
n 消除互斥鎖:pthread_mutex_destroy()
其中,互斥鎖可以分為快速互斥鎖、遞歸互斥鎖和檢錯(cuò)互斥鎖。這3種鎖的區(qū)別主要在于其他未占有互斥鎖的線程在希望得到互斥鎖時(shí)是否需要阻塞等待??焖冁i是指調(diào)用線程會(huì)阻塞直至擁有互斥鎖的線程解鎖為止。遞歸互斥鎖能夠成功地返回,并且增加調(diào)用線程在互斥上加鎖的次數(shù),而檢錯(cuò)互斥鎖則為快速互斥鎖的非阻塞版本,它會(huì)立即返回并返回一個(gè)錯(cuò)誤信息。默認(rèn)屬性為快速互斥鎖。
(2)函數(shù)格式。
表9.5列出了pthread_mutex_init()函數(shù)的語(yǔ)法要點(diǎn)。
表9.5 pthread_mutex_init()函數(shù)語(yǔ)法要點(diǎn)
所需頭文件 | #include pthread.h> | |
函數(shù)原型 | int pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutexattr_t *mutexattr) | |
函數(shù)傳入值 | mutex:互斥鎖 | |
Mutexattr | PTHREAD_MUTEX_INITIALIZER:創(chuàng)建快速互斥鎖 | |
PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP:創(chuàng)建遞歸互斥鎖 | ||
PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP:創(chuàng)建檢錯(cuò)互斥鎖 | ||
函數(shù)返回值 | 成功:0 | |
出錯(cuò):返回錯(cuò)誤碼 |
表9.6列出了pthread_mutex_lock()等函數(shù)的語(yǔ)法要點(diǎn)。
表9.6 pthread_mutex_lock()等函數(shù)語(yǔ)法要點(diǎn)
所需頭文件 | #include pthread.h> |
函數(shù)原型 | int pthread_mutex_lock(pthread_mutex_t *mutex,) |
函數(shù)傳入值 | mutex:互斥鎖 |
函數(shù)返回值 | 成功:0 |
出錯(cuò):-1 |
linux相關(guān)文章:linux教程
評(píng)論