新聞中心

EEPW首頁 > 嵌入式系統(tǒng) > 牛人業(yè)話 > 深入淺出的學習傅里葉變換

深入淺出的學習傅里葉變換

作者: 時間:2015-04-15 來源:網(wǎng)絡 收藏

  再看一個看似簡單的波形:

本文引用地址:http://m.butianyuan.cn/article/272577.htm

  

深入淺出的學習傅里葉變換

 

  這個波形有點像正弦波,但是,比正弦波尖,俗稱“尖頂波”,多見于變壓器空載電流輸入波形。

  我們很難準確定量其與正弦波的區(qū)別。

  采用后,得到下述頻譜(幅值譜):

  

深入淺出的學習傅里葉變換

 

  主要包括3、5、7、9次諧波,一目了然!

  是一種信號分析方法,讓我們對信號的構成和特點進行深入的、定量的研究。把信號通過頻譜的方式(包括幅值譜、相位譜和功率譜)進行準確的、定量的描述。

  這就是的主要目的。

  現(xiàn)在,我們知道傅里葉變換的目的了, 剩下的問題是:

  2為什么傅里葉變換要把信號分解為正弦波的組合,而不是方波或三角波?

  其實,如果張三能夠證明, 任意信號可以分解為方波的組合,其分解的方法不妨稱為張三變換;李四能夠證明,任意信號可以分解為三角波的組合,其分解的方法也可以稱為李四變換。

  傅里葉變換是一種信號分析的方法。既然是分析方法,其目的應該是把問題變得更簡單,而不是變得更復雜。傅里葉選擇了正弦波,沒有選擇方波或其它波形,正好是其偉大之處!

  正弦波有個其它任何波形(恒定的直流波形除外)所不具備的特點:正弦波輸入至任何線性系統(tǒng),出來的還是正弦波,改變的僅僅是幅值和相位,即:正弦波輸入至線性系統(tǒng),不會產(chǎn)生新的頻率成分(非線性系統(tǒng)如變頻器,就會產(chǎn)生新的頻率成分,稱為諧波)。用單位幅值的不同頻率的正弦波輸入至某線性系統(tǒng),記錄其輸出正弦波的幅值和頻率的關系,就得到該系統(tǒng)的幅頻特性,記錄輸出正弦波的相位和頻率的關系,就得到該系統(tǒng)的相頻特性。

  線性系統(tǒng)是自動控制研究的主要對象,線性系統(tǒng)具備一個特點,多個正弦波疊加后輸入至一個系統(tǒng),輸出是所有正弦波獨立輸入時對應輸出的疊加。

  也就是說,我們只要研究正弦波的輸入輸出關系,就可以知道該系統(tǒng)對任意輸入信號的響應。

  這就是傅里葉變換的最主要的意義!

  四如何求傅里葉變換?

  文章開始就說了,具體求傅里葉變換,有成熟的函數(shù)可供調用。本文只講述如何理解傅里葉變換的思想。如果你掌握了這個思想,不用再記公式,也不用去調用什么函數(shù),自己編個簡單程序就可實現(xiàn)。就算你不會編程,只要你學過三角函數(shù),至少可以理解傅里葉變換的過程。

  傅里葉的偉大之處不在于如何進行傅里葉變換,而是在于給出了“任何連續(xù)周期信號可以由一組適當?shù)恼仪€組合而成”這一偉大的論斷。

  知道了這一論斷,只要知道正弦函數(shù)的基本特性,變換并不難,不要記公式,你也能實現(xiàn)傅里葉變換!

  正弦函數(shù)有一個特點,叫做正交性,所謂正交性,是指任意兩個不同頻率的正弦波的乘積,在兩者的公共周期內的積分等于零。

  這是一個非常有用的特性,我們可以利用這個特性設計一個如下的檢波器(下稱檢波器A):

  檢波器A由一個乘法器和一個積分器構成,乘法器的一個輸入為已知頻率f的單位幅值正弦波(下稱標準正弦信號f),另一個輸入為待變換的信號。檢波器A的輸出只與待變換信號中的頻率為f的正弦分量的幅值和相位有關。

  

傅里葉變換檢波器A

 

  待變換信號可能包含頻率為f的分量(下稱f分量),也可能不包含f分量,總之,可能包含各種頻率分量。一句話,待變換信號是未知的,并且可能很復雜!

  沒關系,我們先看看,待變換信號是否包含f分量。

  因為其它頻率分量與標準正弦信號f的乘積的積分都等于零,檢波器A可以當它們不存在!經(jīng)過檢波器A,輸出就只剩下與f分量有關的一個量,這個量等于待變換信號中f分量與標準正弦信號f的乘積的積分。

  很容易得到的結論是:

  如果輸出不等于零,就說明輸入信號包含f分量!

  這個輸出是否就是f分量呢?

  答案:不一定!

  正弦波還有下述的特性:

  相同頻率的正弦波,當相位差為90°時(正交),在一個周期內的乘積的積分值等于零;當相位相同時,積分值達到最大,等于兩者的有效值的乘積,當相位相反時,積分值達到最小,等于兩者的有效值的乘積取反。

  我們知道標準正弦信號f的初始相位為零,但是,我們不知道f分量的初始相位!如果f分量與標準正弦信號f的相位剛好差90°(或270°),檢波器A輸出也等于零!為此,我們再設計一個檢波器B:

  檢波器B與檢波器A的不同之處在于檢波器B用一個標準余弦信號f(與標準正弦信號A相位差90°)替代濾波器A中的標準正弦信號f。如果待變換信號中包含f分量,檢波器A和檢波器B至少有一個輸出不等于零。

  

傅里葉變換檢波器B

 

  利用三角函數(shù)的基礎知識可以證明,不論f分量的初始相位如何,檢波器A和檢波器B輸出信號的幅值的方和根就等于f分量的幅值;而檢波器B和檢波器A的幅值的比值等于f分量初始相位的正切,如此如此……即可求出f分量的相位。

  我們再把標準正弦信號f和標準余弦信號f的頻率替換成我們關心的任意頻率,就可以得到輸入信號的各種頻率成分。如果知道輸入信號的頻率,把這個頻率作為基波頻率f0,用f0、2f0、3f0依次替代標準正弦信號f和標準余弦信號f的頻率,就可以得到輸入信號的基波、2次諧波和3次諧波。

  這就是傅里葉變換!

  什么?不會積分?

  沒有關系,實際上,在諧波檢測儀、電能質量分析儀等各類電參量測量儀器中,現(xiàn)在用的都是基于交流采樣的離散傅里葉變換,在離散信號處理中,累加就是積分!

  傅里葉變換就是這么簡單,您學會了嗎?

三相異步電動機相關文章:三相異步電動機原理

上一頁 1 2 下一頁

關鍵詞: 傅里葉變換

評論


相關推薦

技術專區(qū)

關閉