使用LabVIEW 與 NI FlexRIO實(shí)現(xiàn)單原子反饋控制
具有1 ns分辨率與64位動(dòng)態(tài)范圍的四通道時(shí)域數(shù)字轉(zhuǎn)換器
本文引用地址:http://m.butianyuan.cn/article/121896.htm工作在很低的光強(qiáng)下,要求使用的設(shè)備能夠探測(cè)單個(gè)光子。這些設(shè)備,稱為單光子計(jì)數(shù)模塊(SPCM),是基于雪崩光電二極管制造的,并能在探測(cè)到單個(gè)光子的時(shí)候發(fā)射數(shù)字電子脈沖(如圖4所示)。我們使用由美國(guó)珀金埃爾默(PerkinElmer®)公司制造的設(shè)備(AQR-14)。脈沖的上升沿能夠以350皮秒的精確度表示出光子的到達(dá)時(shí)間。對(duì)于我們的應(yīng)用來(lái)說(shuō),1 ns的分辨率剛好需要FPGA對(duì)每個(gè)連接到SPCM的數(shù)字通路以1 GHz的頻率采樣。
高采樣率可以通過使用Xilinx Virtex-5設(shè)備內(nèi)置的數(shù)字串并轉(zhuǎn)換能力實(shí)現(xiàn),我們可以用它來(lái)把1 Gbit/s的數(shù)據(jù)流轉(zhuǎn)換成8個(gè)同步的,每個(gè)125 Mbits/s的數(shù)據(jù)流。 每個(gè)數(shù)據(jù)流描述原始數(shù)據(jù)流的一部分,數(shù)據(jù)間的時(shí)間間隔為1 ns(如圖5所示)。這項(xiàng)功能是通過LabVIEW中插入常用CLIP (器件級(jí)知識(shí)產(chǎn)權(quán)方案)實(shí)現(xiàn)的,從而允許集成的VHDL代碼訪問FPGA的輸入/輸出引腳。
每個(gè)上升沿對(duì)應(yīng)于一個(gè)光子撞擊,需要至少36位動(dòng)態(tài)范圍的時(shí)間標(biāo)記;記錄多達(dá)一分鐘的數(shù)據(jù)集是非常有必要的,同時(shí)要避免內(nèi)部計(jì)數(shù)器的溢出。這是通過運(yùn)用邊緣檢測(cè)單元實(shí)現(xiàn)的,它對(duì)每8位寬度的,由“iserdes”產(chǎn)生輸出的“串并轉(zhuǎn)換”的數(shù)據(jù)流進(jìn)行掃描。無(wú)論何時(shí)探測(cè)到上升沿,一個(gè)事件標(biāo)志被宣稱。一個(gè)用于表示8 ns間隔中事件發(fā)生位置的,3位形式的數(shù)據(jù)另外產(chǎn)生出來(lái)。這個(gè)值與61位的計(jì)數(shù)器同步運(yùn)行在125 MHz的時(shí)鐘下??傆?jì),這能提供64位的時(shí)間標(biāo)記,然后它——連同事件標(biāo)志一起——被傳遞給LabVIEW FPGA。從那一刻起,LabVIEW VI負(fù)責(zé)處理剩下的部分。
四個(gè)探測(cè)器中每一個(gè)的光子撞擊的時(shí)間標(biāo)記都緩存在FIFOs。隨后,它們被分類并合并成一個(gè)常見的數(shù)據(jù)流,它也具有控制信息。在數(shù)據(jù)流經(jīng)由DMA通道進(jìn)入主機(jī)PC的內(nèi)存之前,它被緩存于NI FlexRIO模塊的DRAM中??傮w而言,這種結(jié)構(gòu)允許在每個(gè)通道低于2,000個(gè)事件的情況下,實(shí)現(xiàn)每秒高達(dá)125百萬(wàn)個(gè)事件的峰值計(jì)數(shù)率。此外,平均每秒1億個(gè)事件的計(jì)數(shù)率也可實(shí)現(xiàn)。這種情況可以持續(xù)大約1.6千萬(wàn)個(gè)事件,這是由DDR2內(nèi)存的尺寸與速度限制造成的。最終,一個(gè)持續(xù)的25 MHz的計(jì)數(shù)率被實(shí)現(xiàn),這是由PXI總線的帶寬限制所決定的。升級(jí)成NI PXIe-796x NI FlexRIO模塊將顯著地提高平均計(jì)數(shù)率,這是因?yàn)樵黾拥腜XI Express總線速度,以及更快更大的DDR2內(nèi)存。
請(qǐng)注意,盡管使用了專為處理高達(dá)200 Mbit/s數(shù)據(jù)率的NI 6581適配器模塊的DDCA口,只要計(jì)數(shù)率不超過100 MHz,以1ns的分辨率探測(cè)上升沿仍然是可行的。適當(dāng)?shù)倪\(yùn)行模式已經(jīng)通過使用安捷倫的81150A 脈沖信號(hào)發(fā)生器的大量測(cè)試進(jìn)行了驗(yàn)證。
逐個(gè)光子對(duì)單個(gè)原子的反饋
FPGA要執(zhí)行的主要任務(wù)是實(shí)時(shí)對(duì)原子軌跡進(jìn)行有效控制。我們使用NI FlexRIO FPGA模塊來(lái)控制單個(gè)原子的運(yùn)動(dòng),它被俘獲于光腔內(nèi)部的光學(xué)偶極阱。只需要通過探測(cè)一些光子,我們就能獲得有關(guān)阱中原子實(shí)際位置的充足信息,從而操控它的運(yùn)動(dòng)。在這里,F(xiàn)PGA模塊被用于記錄光子的到達(dá)時(shí)間,評(píng)估原子的軌跡,并基于這些信息改變?cè)拥姆@勢(shì)能。當(dāng)探測(cè)到單個(gè)光子時(shí),一個(gè)數(shù)字化的電子脈沖被光電探測(cè)器發(fā)射出來(lái),到達(dá)時(shí)間被FPGA以1 ns的分辨率在多個(gè)通路記錄。基于光子被探測(cè)到的計(jì)數(shù)率變化,F(xiàn)PGA判斷原子是否正向俘獲勢(shì)能的中心移動(dòng),或是在勢(shì)阱的外部,來(lái)決定減少或增加俘獲勢(shì)能。
NI FlexRIO模塊將被原子散射的光子的到達(dá)時(shí)間逐個(gè)分類并歸棧。典型的歸棧時(shí)間間隔一般為幾百萬(wàn)分之一秒,它涉及到曝光時(shí)間,每隔幾納秒需要校正一下。散射光子率的變化通過比較當(dāng)前堆棧與之前堆棧來(lái)評(píng)估,它被延時(shí),延時(shí)時(shí)間等于曝光時(shí)間。延時(shí)使用FIFOs實(shí)現(xiàn)。在我們的實(shí)驗(yàn)中,光子通量的減少表明原子正向光腔的中部移動(dòng),而增加預(yù)示著原子正向外部移動(dòng)。因?yàn)楸环@的原子對(duì)多種不同的力都非常敏感,它的運(yùn)動(dòng)在規(guī)則振動(dòng)的同時(shí),又疊加了一些無(wú)序的運(yùn)動(dòng)。這種機(jī)制使得原子軌跡在時(shí)間尺度內(nèi)的不可預(yù)測(cè)性比它的振動(dòng)頻率更大,其振動(dòng)頻率一般約為5 kHz。一旦原子積累的動(dòng)能超過它所處勢(shì)阱的深度,它就會(huì)丟失。原子呆在勢(shì)阱的時(shí)間被認(rèn)為是存儲(chǔ)時(shí)間。此外,對(duì)于一個(gè)被俘獲原子來(lái)說(shuō),散射光子的通量一般僅為每10 µs一個(gè)光子的量級(jí),從而使執(zhí)行有效的反饋方案非常困難,這是因?yàn)橛杏玫男畔⑻?。一種可行的方案需要數(shù)字化地在高低值之間改變阱的勢(shì)壘深度,取決于是否當(dāng)前時(shí)間間隔內(nèi)的撞擊數(shù)量超過先前一定數(shù)值。就如同它看起來(lái)那么簡(jiǎn)單,與沒有信號(hào)反饋回來(lái)的情況相比,它在原子的平均存儲(chǔ)時(shí)間方面增加了30倍。存儲(chǔ)時(shí)間平均1秒,最高超過7秒的結(jié)果已經(jīng)實(shí)現(xiàn),從而使這項(xiàng)技術(shù)完全可以與激光冷卻方案相比,它要求更為復(fù)雜的光學(xué)結(jié)構(gòu)。目前更加精密的反饋策略正在研究中。
監(jiān)測(cè)
除了存儲(chǔ)有關(guān)發(fā)射光子流的信息并反饋到系統(tǒng)中,將重要的信息顯示給實(shí)驗(yàn)者也至關(guān)重要。對(duì)于最初的方案來(lái)說(shuō),這一點(diǎn)尤其重要。為實(shí)現(xiàn)這一目的,我們將一個(gè)快速數(shù)字模擬轉(zhuǎn)換器(DAC)與兩個(gè)視頻圖形陣列(VGA)連接器集成到FPGA。
DAC是AD(Analog Devices)公司的TxDAC (AD9744),它能提供210 Ms/s的采樣率,同時(shí)具有14位的分辨率。在當(dāng)前設(shè)計(jì)下,它運(yùn)行在125 MHz的時(shí)鐘頻率下,并輸出一個(gè)與探測(cè)到的光子數(shù)目成正比的電壓。DAC的數(shù)據(jù)與時(shí)鐘引腳被連接到NI 6581;22 Ω的電阻被串聯(lián)以減少數(shù)字DAC輸入的反射。模塊的其余引腳被用于同VGA顯示器交互。基本上每個(gè)VGA連接器含有三根信號(hào)線,以及兩根數(shù)據(jù)線。信號(hào)線傳輸紅,綠,藍(lán)顏色信息。VGA的說(shuō)明書要求它們連接75 Ω的電阻,并且承受0 V (黑色) 到 0.7 V (全部彩色亮度)的電壓。同步由兩個(gè)高阻TTL數(shù)據(jù)線實(shí)現(xiàn),規(guī)定了水平與垂直的回描周期。如果只有8個(gè)顏色值(3位顏色深度)是需要的,那經(jīng)由270 Ω電阻連接VGA連接器信號(hào)引腳與NI 6581適配器模塊(采用3.3 V的配置模式)就足夠了。數(shù)據(jù)線串聯(lián)一個(gè)22 Ω的電阻。我們選擇將顯示器分為兩部分:一部分顯示基于文本的信息,另一部分是圖像信息。對(duì)于文本模式來(lái)說(shuō),一套8乘以16像素的黑/白字體被載入到FPGA的一個(gè)內(nèi)分區(qū)塊RAMs中。另外一個(gè)區(qū)塊RAM存儲(chǔ)了符號(hào)編碼。圖形部分顯示了探測(cè)器發(fā)射的趨勢(shì)圖或反饋算法的計(jì)算;這些圖表也存儲(chǔ)于內(nèi)分區(qū)塊RAM。運(yùn)行于108 MHz像素時(shí)鐘的,1280乘以1024像素的顯示模式可以很容易地實(shí)現(xiàn)。
總結(jié)
使用NI FlexRIO,我們可以創(chuàng)建自己的高性能定制硬件。時(shí)域數(shù)字轉(zhuǎn)換器是非常強(qiáng)大以及功能廣泛的工具,可用于科學(xué)研究與工業(yè)生產(chǎn)的很多不同領(lǐng)域,它所能提供的優(yōu)勢(shì)超過了很多商業(yè)上可用的產(chǎn)品。FPGAs的計(jì)算能力進(jìn)一步幫助我們從硬件上來(lái)實(shí)現(xiàn)時(shí)間嚴(yán)格任務(wù)的實(shí)時(shí)處理,從而使對(duì)較小系統(tǒng)執(zhí)行反饋控制成為可能,甚至于單個(gè)原子與單個(gè)光子的相互作用。
使用LabVIEW FPGA,我們可以快速地開發(fā)FPGA編碼,這是因?yàn)樗母叨雀爬ㄐ裕瑫r(shí)適當(dāng)?shù)丶闪薞HDL IP。此外,使用PXI平臺(tái)讓我們可以在系統(tǒng)中利用跟其它PXI儀器的觸發(fā)與同步,從而使我們可以將定制的儀器集成到更大的系統(tǒng)中去,而不必執(zhí)行整個(gè)的定制設(shè)計(jì)。
參考文獻(xiàn)
[1] A. Kubanek, M. Koch, C. Sames, A. Ourjoumtsev, P. W. H. Pinkse, K. Murr, and G. Rempe, Photon-by-photon feedback control of a single-atom trajectory, Nature 462, 898-901 (2009)
[2] M. Koch, C. Sames, A. Kubanek, M. Apel, M. Balbach, A. Ourjoumtsev, P. W. H. Pinkse, and G. Rempe, Feedback Cooling of a Single Neutral Atom, Phys. Rev. Lett. 105, 173003 (2010)
[3] P. W. H. Pinkse, T. Fischer, P. Maunz, G. Rempe, Trapping an Atom with Single Photons, Nature 404, 365-368 (2000)
[4] P. Maunz, T. Puppe, I. Schuster, N. Syassen, P. W. H. Pinkse, and G. Rempe, Normal-Mode Spectroscopy of a Single-Bound-Atom–Cavity System, Phys. Rev. Lett. 94, 033002 (2005)
評(píng)論