關 閉

新聞中心

EEPW首頁 > 安全與國防 > 設計應用 > 在ARM微處理器上實現Rijndael加密算法

在ARM微處理器上實現Rijndael加密算法

——
作者: 時間:2006-06-09 來源: 收藏

引 言
    2000年10月2日,美國國家標準局NIST宣布,比利時密碼學家Joat Daemen和Vincent Rijmen設計的“RijndaeI算法”以安全性好、運算速度快、存儲要求低、靈活性強最終當選AES。該算法對目前的各種威脅是免疫的。這標志著信息技術有了新的安全工具,為計算機網絡和電子商務的發(fā)展提供了強有力的保障。
    在當前數字信息技術和網絡技術高速發(fā)展的后PC時代,技術已經廣泛地滲透到科學研究、工程設計、軍事技術、各類產業(yè)和商業(yè)文化藝術以及人們的日常生活等方方面面中,成為目前最熱門的技術之一。
    本文使用北京博創(chuàng)興業(yè)科技有限公司研制的UP-NETARM300嵌入式開發(fā)板,在ARM SDT 2.51集成開發(fā)環(huán)境下,建立基于μC/OS-Il操作系統(tǒng)的工程文件,分別調用ARM匯編程序和C程序在嵌入式微處理器上實現了Rijndael算法,并比較了兩者的效率。下面以分組長度和密鑰長度都是128位為例,介紹調用ARM匯編程序實現加密算法的過程。本實現算法可以將密鑰長度擴展
到192位或256位。


1 Rijndael加密算法簡介
1.1 算法流程結構

    Rijndael加密算法的128位輸入分組用以字節(jié)為單位的正方形矩陣描述。該數組被復制到State數組。加密過程分為四個階段:密鑰擴展、輪密鑰加、Nr-1(對應128、192、256位密鑰長度,Nr分別為10、12、14)輪變換及最后一輪變換。輪變換包括字節(jié)代換、行移位、列混淆和輪密鑰加四個過程,最后一輪變換包括字節(jié)代換、行移位和輪密鑰加三個過程。用偽C代碼表示如下:

Rijndael (State, CipherKey)  {

KeyExpansion (CipherKey, ExpandKey);  //密鑰擴展

AddRoundKey (State, RoundKey);  //輪密鑰加

For (i=1;i<Nr;i++)  

Round (State, ExpandKey+4*i);  //輪變換

FinalRound (State, ExpandKey+4 * Nr);  //最后一輪變換}

Round (State, RoundKey){  //輪變換

SubByte (State);  //字節(jié)代換

ShiftRow(State);  //行移位

MixColumn(State);  //列混淆

AddRoundKey(State, RoundKey);  輪密鑰加

FinalRound(State, RoundKey) {  //最后一輪變換

SubByte(State);

ShiftRow(State);

AddRoundKey(State,RoundKey); 
1. 2算法所使用的主要變換
(1)字節(jié)代換SubByte
    用一個簡單的查表操作代替了基于矩陣乘法的復雜仿射變換。Rijndael定義了一個16



評論


相關推薦

技術專區(qū)

關閉