基于DSP TMS320C6416的數(shù)字下變頻技術
該數(shù)字接收機采用主從機方式。多DSP并行處理機作為系統(tǒng)的從處理機主要負責對數(shù)據(jù)的實時處理,主處理機主要完成整機的控制、顯示及其它人機交互功能。ADC的采樣頻率為500MHz,中頻帶寬為20MHz。主處理機選用的高性能的通用微處理器,整機的數(shù)據(jù)總線可以選擇通用的PCI總線。其特點是傳輸速度快,最高可達132Mbytes/s,開發(fā)比較便捷。也可選用CPCI或VME總線,其中CPCI兼有PCI總線的優(yōu)點同時結構堅固,符合軍用標準,也可以采用VME總線結構。以上總線結構可以根據(jù)用戶的需要確定。該數(shù)字接收機的數(shù)據(jù)處理是由多DSP從處理機完成的,該從處理機的DSP個數(shù)可以根據(jù)不同用戶對算法的要求來確定,對于I、Q兩通道的數(shù)字下變頻運算需要4片C6416芯片。圖3以4片DSP為例給出了該多DSP處理機的硬件框圖。該并行處理機工作在共享存儲區(qū)方式下,SDRAM和SBSRAM是全局共享存儲區(qū),AD和DSP之間通過FIFO按照DMA方式進行數(shù)據(jù)交換,主機不直接與DSP的HPI口連接,而是通過一個總線接口電路,采用不同的接口芯片實現(xiàn)與不同總線結構的主機接口。

3.2 數(shù)字下變頻的軟件實現(xiàn)
在該數(shù)字接收機的原理樣機階段,筆者在C6416 Simulator上實現(xiàn)了該數(shù)字下變頻算法。以一個通道為例,該軟件包括混頻和濾波抽取兩部分,考慮到算法的通用性采用了C語言,并對代碼進行了優(yōu)化。這兩部分分別在一片DSP上實現(xiàn),其中一片實現(xiàn)混頻,一片實現(xiàn)濾波抽取。這兩片DSP采用乒乓緩存方式并行工作,其軟件流程見圖4。從圖4中可以看出DSP1實現(xiàn)混頻,存儲區(qū)SBSA及SBSB通過DMA方式實現(xiàn)的,從FIFO來的數(shù)據(jù)也通過DMA方式讀入。由于DMA方式可以在DSP運算的同時完成數(shù)據(jù)的交換,所以數(shù)據(jù)交換不占用額外的時間,實現(xiàn)了混頻和濾波抽取的并行運算。混頻運算實際就是乘法運算。通常為節(jié)省片內存儲空間可以根據(jù)正余因子的對稱性存儲半個周期的數(shù)據(jù),但該數(shù)字接收機中,復振蕩信號的頻率為190MHz,采樣頻率為500MHz,每周期僅3.8個樣值點,所以沒有必要存儲半個周期。實際應用中存儲50個樣值點,也就是19個周期,其余的由對稱性給出。由于C6416采用16bit定點算法,為防止溢出復振蕩信號可由下式給出: W(n)=k%26;#215;sin(2πf/fs%26;#215;n) n=0,1,……,49 (1) 這里k=32767,f=190MHz,fs=500MHz,同時混頻運算的結果要右移15位,對應的C6416代碼如下: for(j=0;j>15; } 其中IN[n]為采樣數(shù)據(jù),OUT[n]為混頻后的結果,SINNUM是復振蕩信號長度。
低通抽取濾波器實現(xiàn)的關鍵是通過合理確定抽取的位置來減少運算量。從圖1可以看出抽取是在濾波之后完成的,實際上根據(jù)變采樣率系統(tǒng)的結構互易性,抽取也可放在濾波之前。這相當于把低通濾波和抽取看作一個濾波器,則

對于20MHz帶寬的中頻信號,以500MHz采樣時,使用兩片C6416就可以實時實現(xiàn)一個通道(I或者Q)的數(shù)字下變頻,滿足了設計要求。采樣長度(bit定點數(shù))采樣時間(μs)混 頻低通濾波周期數(shù)時間(μs)周期數(shù)時間(μs) 2000 4 1812 3.02 2165 3.61 4000 8 3612 6.02 4215 7.19 8000 16 7212 12.02 8615 14.35 16000 32 14412 24.02 12215 20.36 注:表中給出的混頻及低通濾波時間是10次實驗的平均結果,采樣頻率為500MHz,C6416的時鐘頻率為600MHz。
本文引用地址:http://m.butianyuan.cn/article/150366.htm
評論