船載通信天線系統(tǒng)的抗擾亂設(shè)計
2.2 控制實現(xiàn)
天線跟蹤設(shè)備的三軸穩(wěn)定控制采用測速機(jī)作為速度反饋,編碼器作為位置反饋,并將船搖擾動經(jīng)速率陀螺檢測前饋于速度回路。工作原理框圖如圖2所示。
圖2中,K1W1為位置回路校正控制傳遞函數(shù);K2W2為速度回路閉環(huán)傳遞函數(shù),F(xiàn)(S)為補(bǔ)償通道傳遞函數(shù),系統(tǒng)傳遞函數(shù)為:
由式(8)可知:回路跟隨能力是由項
決定,而船搖擾動消除能力由項
決定。從第二項可以看出消除船搖擾動的電機(jī)驅(qū)動角速度量由兩部分組成,一是慣性空間中視軸被擾動的當(dāng)前角速度(目標(biāo)靜止)。二是由補(bǔ)償回路給出的當(dāng)前時刻擾動量通過速度回路給出的電機(jī)驅(qū)動角速度。
依據(jù)完全不變性原理,當(dāng)(1+F(S)K2W2)ωf,即F(s)=-1/K2W2時,實現(xiàn)對船搖擾動的完全隔離,即滿足這個條件時,不論擾動量ωf為多大,對輸出無影響??墒?,速度回路K2W2中含有積分環(huán)節(jié)、慣性環(huán)節(jié)、二階環(huán)節(jié),如果要實現(xiàn)完全的不變性,必然F(S)中要具有許多個微分環(huán)節(jié),這樣 F(S)的輸出將充滿噪聲,使系統(tǒng)根本無法工作。但是實現(xiàn)局部的不變性是可能的。即用低階微分代替高階微分,并使其系數(shù)滿足某種條件,從而滿足系統(tǒng)精度的要求。
實際使用中,合理選擇前饋補(bǔ)償系數(shù),使前饋回路最大化的消除當(dāng)前擾動,在此基礎(chǔ)上結(jié)合環(huán)路的跟隨能力,有效的消除視軸的偏差,實現(xiàn)高精度跟蹤。因此,前饋回路起到粗調(diào)節(jié)的作用,而位置跟蹤回路則可稱為精調(diào)節(jié)。
2.3 工程應(yīng)用
2.3.1 安裝與測量
采用3個速率陀螺測量出因船體搖擺引起的附加在方位軸、橫傾軸和俯仰軸方向的速度,用于開環(huán)補(bǔ)償。
俯仰陀螺安裝在方位轉(zhuǎn)臺上,敏感軸與天線的俯仰軸平行,陀螺隨方位軸運(yùn)動,敏感不到方位軸的旋轉(zhuǎn)、俯仰軸的旋轉(zhuǎn)、船體的航向速率等,它敏感的是船體的橫搖、縱搖速率,如式(2)所示,可直接對俯仰軸進(jìn)行開環(huán)前饋補(bǔ)償。
分析橫傾軸的擾動(式(3))和方位軸的擾動(式(4)),無法用一只陀螺直接測量到,可用間接的方法獲得。用2只陀螺分別測量cosAωy+s- inAωp和ωh,根據(jù)俯仰角E用數(shù)學(xué)的方法得到式(3)和式(4)。這樣,測量ωh分量的速率陀螺安裝在方位底座(不隨方位軸轉(zhuǎn)動),其敏感軸與方位軸平行,輸出主要為船體的航向速率信息。測量cosAωy+sinAωp分量的速率陀螺安裝在方位轉(zhuǎn)盤上(隨方位軸轉(zhuǎn)動),其敏感軸與橫傾軸平行。
2.3.2 測試與分析
某船載三軸天線控制系統(tǒng)采用抗擾動設(shè)計。在海上進(jìn)行搖擺實驗,在典型海況參數(shù)(搖擺振幅±6°,搖擺周期12s)下。天線指向衛(wèi)星自跟蹤,轉(zhuǎn)動船的航向,使船升搖時測量俯仰軸的船搖隔離度。這時天線方位角轉(zhuǎn)至90°或270°;測量橫傾軸的船搖隔離度,使天線方位角轉(zhuǎn)至0°或180°。隔離度測試結(jié)果如圖 3所示。圖中,曲線系列1表示加前饋跟蹤數(shù)據(jù);曲線系列2表示無前饋跟蹤數(shù)據(jù)。測試結(jié)果為:船搖隔離度為46.4 dB;跟蹤精度為0.031°。由以上數(shù)據(jù)分析,可以得出開環(huán)補(bǔ)償方案完全滿足系統(tǒng)設(shè)計的性能指標(biāo)要求。
3 結(jié)束語
前饋補(bǔ)償并未改變原閉環(huán)系統(tǒng)的極點和閉環(huán)零點。因此,不會影響系統(tǒng)的伺服帶寬和穩(wěn)定性。工程使用時融合了前饋補(bǔ)償和反饋控制的應(yīng)用,在保證功能、性能的同時,簡化系統(tǒng)、提高設(shè)備的可靠性和使用壽命,實際使用效果顯著。
評論