用于TD-SCDMA系統(tǒng)的集成CMOS對(duì)稱式收/發(fā)開(kāi)關(guān)的設(shè)計(jì)
TD-SCDMA使用的是時(shí)分雙工方式(TDD)。對(duì)于TDD通信系統(tǒng)來(lái)說(shuō),高質(zhì)量的收/發(fā)開(kāi)關(guān)是RF前端電路的關(guān)鍵模塊。為了提高集成度,收/發(fā)開(kāi)關(guān)可以采用全集成的形式來(lái)取代傳統(tǒng)的GaAs MOSFET和PIN二極管等分立元件。
使用CMOS收/發(fā)開(kāi)關(guān)取代GaAs MOSFET收/發(fā)開(kāi)關(guān)的好處之一是CMOS開(kāi)關(guān)電路不需要負(fù)的控制電壓。而且,如果能用標(biāo)準(zhǔn)CMOS工藝來(lái)完成,開(kāi)關(guān)電路就可以和收發(fā)器中其它RF模塊集成在一起,這將降低成本。
TD-SCDMA系統(tǒng)規(guī)劃使用的頻段主要為1900MHz-1920MHz和2010MHz-2025MHz。本文采用TSMC 0.35m CMOS工藝來(lái)制作射頻收/發(fā)開(kāi)關(guān)。通過(guò)優(yōu)化設(shè)計(jì),該開(kāi)關(guān)電路在2GHz處取得了較好的仿真結(jié)果。
圖1 對(duì)稱式收/發(fā)開(kāi)關(guān)電路示意圖
圖2 MOSFET導(dǎo)通時(shí)的等效電路圖
圖3 開(kāi)關(guān)截止一側(cè)的小信號(hào)等效電路
(a) 插入損耗
(b) 隔離度
優(yōu)化設(shè)計(jì)
圖1是對(duì)稱式串并結(jié)構(gòu)NMOS射頻開(kāi)關(guān)的電路示意圖。串聯(lián)的晶體管M1和M2完成主要的開(kāi)關(guān)功能。并聯(lián)的晶體管M3和M4通過(guò)將截止晶體管一側(cè)的射頻信號(hào)導(dǎo)通到地來(lái)提高開(kāi)關(guān)電路的隔離度??刂齐妷篤ctrl 和用于控制晶體管M1和M2的開(kāi)與合 。當(dāng)Vctrl為高電平時(shí),M1導(dǎo)通,M2截止,開(kāi)關(guān)處于發(fā)射狀態(tài);當(dāng)為高電平時(shí),M1截止,M2導(dǎo)通,開(kāi)關(guān)處于接收狀態(tài)。該開(kāi)關(guān)電路還包括旁通電容C1和C2,它們提供了開(kāi)關(guān)電路中TX和RX端口的直流偏置。MOS管柵極上的偏置電阻R1、R2、R3和R4的作用是提高隔離度和線性度。本設(shè)計(jì)中,串聯(lián)MOS管柵寬取200m,并聯(lián)MOS管的柵寬取100m,旁通電容C1和C2取5pF,柵極偏置電阻R1、R2、 R3和R4均取10K。
射頻收/發(fā)開(kāi)關(guān)的重要性能指標(biāo)為:插入損耗(IL)、隔離度(Isolation)和線性度(通常用1dB壓縮點(diǎn)P1dB來(lái)表示)。其中插入損耗是設(shè)計(jì)的重點(diǎn)。
插入損耗
插入損耗表示當(dāng)開(kāi)關(guān)導(dǎo)通時(shí)射頻信號(hào)通過(guò)射頻開(kāi)關(guān)的功耗。
管子的導(dǎo)通電阻是影響插入損耗的關(guān)鍵因素之一。因此,在本設(shè)計(jì)中只使用nMOSFET。由于硅襯底的導(dǎo)電特性,管子的漏極和源極對(duì)襯底的結(jié)電容及相關(guān)的寄生電容也是影響插入損耗的主要因素。
為了簡(jiǎn)化,只分析包含單個(gè)MOS管的電路,圖2為其導(dǎo)通時(shí)的等效電路圖。在這個(gè)分析中,假設(shè)管子偏置在線性區(qū)。圖2中,Vrf、Rs分別為等效信號(hào)源及源內(nèi)阻,Ron為MOS管的導(dǎo)通電阻,Rb為其襯底電阻,Rl為負(fù)載電阻,Ct是其等效電容(虛線部分),其等效式為:
如果負(fù)載端和源端都與特征阻抗(Z0)匹配,則插入損耗可以用正向傳輸系數(shù)的幅度平方(|S21|2)的倒數(shù)來(lái)表示。
由該表達(dá)式可以看出,導(dǎo)通電阻Ron越大,插入損耗越大;寄生耦合電容Ct越大,插入損耗越?。灰r底電阻對(duì)插入損耗的影響并不呈簡(jiǎn)單的線性關(guān)系。實(shí)際上,有一個(gè)使插入損耗最大的襯底電阻Rb(max)
因此,用CMOS技術(shù)制作的RF開(kāi)關(guān)電路要獲得較低的插入損耗,就要注意避免襯底電阻接近Rb(max)。然而,如果不對(duì)襯底電阻做特殊處理,這個(gè)值基本上屬于RF開(kāi)關(guān)電路中晶體管的Rb值的典型范圍。對(duì)于標(biāo)準(zhǔn)CMOS工藝,取得較大的襯底電阻是不容易做到的,因此,降低襯底電阻是更好的方案。在版圖設(shè)計(jì)中,可通過(guò)增加襯底接觸來(lái)減小襯底電阻,從而達(dá)到進(jìn)一步減小插入損耗的目的。
IL還可以用管子的柵寬(W)來(lái)表示,如(3)式。
一般來(lái)說(shuō),對(duì)于給定的工藝和版圖類型,Rbo、Cto和Rono可以被認(rèn)為是固定的。所以柵寬的大小對(duì)插入損耗起著重要的影響:隨著柵寬的增大,導(dǎo)通電阻 Ron減小,從而使插入損耗減??;如果柵寬繼續(xù)增大,通過(guò)電容Ct耦合到襯底的信號(hào)也會(huì)增大,則插入損耗會(huì)隨著柵寬的增大而增大。所以,在仿真中需要確定最佳柵寬。
取并臂M3和M4的柵寬(WM3和WM4)接近WM1的一半。仿真結(jié)果表明,當(dāng)WM1和WM2取200m且WM3和WM4取100m時(shí),插入損耗最小。
另外,在MOS管的柵極增加電阻R的阻值也可降低插入損耗。仿真顯示,隨著柵極電阻的增大,插入損耗減小,但增加到10K以后,插入損耗減小的幅度就很小了,所以考慮到版圖面積,取柵極電阻的阻值為10K。
隔離度
截止?fàn)顟B(tài)下,開(kāi)關(guān)的小信號(hào)等效電路如圖3所示。
圖3中,Ron表示并聯(lián)MOS管的導(dǎo)通電阻,Coff表示串聯(lián)MOS管在截止?fàn)顟B(tài)下的漏/源極間電容。
依據(jù)S與Z參數(shù)之間的變換公式,可得到發(fā)射端(TX)和天線端(ANT)間的隔離度表達(dá)式:
(4) 式表明,通過(guò)使并聯(lián)的MOS管的導(dǎo)通電阻遠(yuǎn)小于信號(hào)源的特征阻抗,使得從串聯(lián)的、處于截止?fàn)顟B(tài)的MOS管泄漏出來(lái)的信號(hào),可以通過(guò)并聯(lián)的MOS管導(dǎo)通到地,而不是泄漏到發(fā)送端,從而大大提高了隔離度。從仿真的結(jié)果看,加上并聯(lián)MOS管后,可以將隔離度提高10dB以上,而由此帶來(lái)的插入損耗的惡化卻可以忽略。此外,增加并聯(lián)MOS管的柵寬,也可以提高隔離度,但同時(shí)也會(huì)降低插入損耗和線性度,所以不宜取較大的柵寬。在本設(shè)計(jì)中,柵寬取為100m。
線性度
線性度,即功率處理能力,通常用P1dB來(lái)表示。CMOS開(kāi)關(guān)的線性度通常受到以下兩種情況的制約:1.應(yīng)截止的MOS管發(fā)生了導(dǎo)通,對(duì)于M3管,這種情況最嚴(yán)重;2. MOS管柵極電介質(zhì)性能不夠穩(wěn)定。
為了提高開(kāi)關(guān)的線性度,本設(shè)計(jì)采用了兩種措施:1)在MOS管的漏、源極兩端都加上直流偏置電壓;2)給4個(gè)MOS管都加上柵極電阻R。
從仿真的結(jié)果看,增加?xùn)艠O電阻可以使線性度改善5dB左右。
仿真結(jié)果
采用Cadence Spectre / Spectre RF仿真器進(jìn)行仿真。在仿真過(guò)程中,分別對(duì)MOS管的柵寬和柵極電阻的阻值進(jìn)行了優(yōu)化選取,并確定了偏置電壓和偏置電容 。最終確定串聯(lián)MOS管M1和M2 的柵寬取200m,并聯(lián)MOS管M3和M4的柵寬取100m,柵極電阻R 取10K,偏置電容C1和C2取5pF。仿真結(jié)果如圖4所示。
結(jié)語(yǔ)
本文分析了影響對(duì)稱式射頻收/發(fā)開(kāi)關(guān)性能的因素,包括柵寬、導(dǎo)通電阻、襯底電阻、柵極電阻等。采用TSMC 0.35m CMOS工藝進(jìn)行設(shè)計(jì)和實(shí)現(xiàn)。經(jīng)過(guò)優(yōu)化設(shè)計(jì)和仿真,獲得了插入損耗為1.0 dB、隔離度46.3 dB和1 dB壓縮點(diǎn)12.8 dBm的電路。該射頻收/發(fā)開(kāi)關(guān)可以與應(yīng)用于TD-SCDMA的全集成CMOS收發(fā)器集成在一起,構(gòu)成集成度更高、價(jià)格更低的收發(fā)器。
評(píng)論