串連蓄電池組的均充技術研究
單個蓄電池的電壓與容量有限,在很多場合下要組成串連蓄電池組來使用。但蓄電池組的中的電池存在均衡性的問題。如何提高蓄電池組的使用壽命,提高系統(tǒng)的穩(wěn)定性和減少成本,是擺在我們面前的重要問題。
蓄電池的使用壽命是由多方面的因素所決定,其中最重要的是蓄電池本身的物理性能。
此外,電池管理技術的低下和不合理的充放電制度也是造成電池壽命縮短的重要原因。對蓄電池組來說,除去上述原因,單體電池間的不一致性也是個重要因素。針對蓄電池充放電過程中存在的單體電池不均衡的現(xiàn)象,筆者分析比較了目前的幾種均充方法,結(jié)合實際提出了無損均充方法,并進行了試驗驗證。
現(xiàn)有的均衡充電方法
實現(xiàn)對串聯(lián)蓄電池組的各單體電池進行均充,目前主要有以下幾種方法。
1.在電池組的各單體電池上附加一個并聯(lián)均衡電路,以達到分流的作用。在這種模式下,當某個電池首先達到滿充時,均衡裝置能阻止其過充并將多余的能量轉(zhuǎn)化成熱能,繼續(xù)對未充滿的電池充電。該方法簡單,但會帶來能量的損耗,不適合快充系統(tǒng)。
2.在充電前對每個單體逐一通過同一負載放電至同一水平,然后再進行恒流充電,以此保證各個單體之間較為準確的均衡狀態(tài)。但對蓄電池組,由于個體間的物理差異,各單體深度放電后難以達到完全一致的理想效果。即使放電后達到同一效果,在充電過程中也會出現(xiàn)新的不均衡現(xiàn)象。
3.定時、定序、單獨對蓄電池組中的單體蓄電池進行檢測及均勻充電。在對蓄電池組進行充電時,能保證蓄電池組中的每一個蓄電池不會發(fā)生過充電或過放電的情況,因而就保證了蓄電池組中的每個蓄電池均處于正常的工作狀態(tài)。
4.運用分時原理,通過開關組件的控制和切換,使額外的電流流入電壓相對較低的電池中以達到均衡充電的目的。該方法效率比較高,但控制比較復雜。
圖1 分時控制均充原理圖
5.以各電池的電壓參數(shù)為均衡對象,使各電池的電壓恢復一致。如圖2所示,均衡充電時,電容通過控制開關交替地與相鄰的兩個電池連接,接受高電壓電池的充電,再向低電壓電池放電,直到兩電池的電壓趨于一致。
該種均衡方法較好的解決了電池組電壓不平衡的問題,但該方法主要用在電池數(shù)量較少的場合。
圖2 均衡電壓充電原理示意圖
6.整個系統(tǒng)由單片機控制,單體電池都有獨立的一套模塊。模塊根據(jù)設定程序,對各單體電池分別進行充電管理,充電完成后自動斷開。
該方法比較簡單,但在單體電池數(shù)多時會使成本大大增加,也不利于系統(tǒng)體積的減小。
無損均充電路
本文提出了一種無損均充電路。均充模塊啟動后,過充的電池會將多余的電量轉(zhuǎn)移到?jīng)]有充滿的電池中,實現(xiàn)動態(tài)均衡。其效率高損失少,所有的電池電壓都由均充模塊全程監(jiān)控。
1 電路設計
N節(jié)電池串聯(lián)組成的電池組,主回路電流是Ich。各串聯(lián)電池都接有一個均衡旁路,如圖3所示。圖中BTi是單體電池,Si是MOSFET,電感Li是儲能元件。Si、Li、Di構(gòu)成一個分流模塊Mi。
在一個充電周期中,電路工作過程分為兩個階段:電壓檢測階段(時間為Tv)和均充階段(時間為Tc)。在電壓檢測階段,均衡旁路電路不工作,主電源對電池組充電,同時檢測電池組中的單體電池電壓,并根據(jù)控制算法計算MOSFET的占空比。在均充階段,旁路中被觸發(fā)的MOSFET由計算所得的占空比來控制開關狀態(tài),對相應的電池進行均充處理。在這個階段中,流經(jīng)各單體電池的電流是不斷變化的,也是各不相同的。
圖3 均充電路
除去連接在B1兩端的M1,所有的旁路分流模塊組成都是一樣的。在均充旁路中,由于二極管Di的單向?qū)ㄗ饔?,所有的分流模塊都會將多余的電量從相應的電池轉(zhuǎn)移到上游電池中,而M1則把多余的電量轉(zhuǎn)移到下游的電池中。
2 開關管占空比的計算
充電時電池的荷電狀態(tài)SOC(state of charge)可由下面的經(jīng)驗公式來得出,其中V是電池的端電壓。
SOC=-0.24V 2+7.218V- 53.088 (1)
SOC是電池當前容量與額定容量之比,SOC=Q/Q TOTAL
評論