新聞中心

EEPW首頁 > 嵌入式系統(tǒng) > 設計應用 > 基于凌陽單片機的通用型語音控制系統(tǒng)

基于凌陽單片機的通用型語音控制系統(tǒng)

作者: 時間:2011-02-12 來源:網(wǎng)絡 收藏


2 語音播放模塊設計
語音處理大致可以分為A/D、編碼處理、存儲、解碼處理以及D/A等。然而,麥克風輸入所生成的WAVE文件,其占用的存儲空間很大,對于單片機來說想要存儲大量的信息顯然是不可能的,而凌陽SPCE061A提出了解決的方法,即SACM-LIB,該庫可將A/D、編碼、解碼、存儲及D/A做成相應的模塊,對應的每個模塊都有其應用程序接口API,所以只需了解每個模塊所要實現(xiàn)的功能及其參數(shù)的內(nèi)容,然后調(diào)用該API函數(shù)即可實現(xiàn)該功能。

3 語音識別模塊設計
3.1 語音識別原理

語音識別系統(tǒng)包括學習訓練過程和識別過程2大部分,基本原理如圖3所示。

本文引用地址:http://m.butianyuan.cn/article/172990.htm


(1)預處理。包括預加重、加窗分幀、端點檢測等處理過程,在預處理之前還有語音信號的數(shù)字化處理過程。其中,包括反混疊濾波、模/數(shù)轉(zhuǎn)換自動增益等用以去除聲門激勵、口鼻輻射、高于1/2采樣率的高頻信號和噪聲信號的影響,以實現(xiàn)語音信號的數(shù)字化。
(2)聲學特征分析提取。經(jīng)過預處理后的語音信號,要對其進行特征提取,即特征參數(shù)分析。該過程就是從原始語音信號中抽取能夠反映語音本質(zhì)的特征參數(shù),以形成特征矢量序列。目前語音識別所用的特征參數(shù)主要有2種類型:線性預測倒譜系數(shù)(LPCC)和美爾頻標倒譜系數(shù)(MFCC)。LPCC系數(shù)主要是模擬人的發(fā)聲模型,未考慮人耳的聽覺特性。MFCC系數(shù)考慮到了人的聽覺特性,但要計算傅里葉變換將耗費大量寶貴的計算資源。因此,在嵌入式語音識別系統(tǒng)中一般都選用LPCC系數(shù)。語音特征提取是分幀提取的,每幀特征參數(shù)一般構(gòu)成一個矢量。為此,有必要采用很有效的數(shù)據(jù)壓縮技術(shù)方法對數(shù)據(jù)進行壓縮。
(3)參考模板。參考模版時將一個或多個說話者多次重復的語音參數(shù)經(jīng)過訓練得到,它是聲學參數(shù)模版,在系統(tǒng)識別使用前獲得并存儲起來。
(4)判定識別。模式識別是將輸入的待識別語音特征參數(shù)與訓練得到的參考語音模式進行逐一比較分析,獲得的最佳匹配參考模式便為識別結(jié)果。目前常用的語音識別算法主要有動態(tài)時間規(guī)則、離散隱馬爾可夫模型、連續(xù)隱馬爾可夫模型及人工神經(jīng)網(wǎng)。
3.2 語音識別系統(tǒng)原理和算法
在SPCE061A內(nèi)置的8通道10位模/數(shù)轉(zhuǎn)換器(analog to digital converter,ADC)中專門設置了一個只用于語音輸入的通道MIC_IN,針對較弱信號的轉(zhuǎn)換還設計了一個音頻放大器(automation gain control,AGC)。對其自動增益控制放大后再進行A/D轉(zhuǎn)換。實際上,可以把模/數(shù)轉(zhuǎn)換器看作是一個實現(xiàn)模/數(shù)信號轉(zhuǎn)換的編碼器。ADC轉(zhuǎn)換的原理是依次把設定在逐次逼近寄存器SAR中的數(shù)字送至10位DAC0中進行D/
A轉(zhuǎn)換。DAC0的電壓模擬量輸出值與外部的電壓模擬量輸入值進行比較,以便盡快找出外部電壓模擬量的數(shù)字量輸出,其輸出的模擬量VDAC0與采樣后的輸入電壓值VIN相比較時可采用對半搜索法,即從SAR中最高有效位開始,根據(jù)比較的大小逐位確定其數(shù)碼取“1”,其余位為“ 0”。語音識別算法的原理是:在訓練過程中,從每個說話人發(fā)出的訓練語句中提取相應的能充分描述各個說話人行為的特征矢量,這些特征矢量稱為各說話人的模板。在測試階段,從說話人發(fā)出的語音信號中按同樣的處理方法提取測試模板,并與相應的參考模板相比較。由于說話人每次發(fā)音是變化的,測試模板和參考模板在時間尺度上不可能完全一致。為了使二者能在時間等效點上加以比較,采用了動態(tài)時間規(guī)整
法(DTW)?;驹硎窃趨⒖紭颖咎卣魇噶啃蛄蠥=[a1,a2,…,aM]與待識語音特征矢量序列B=[b1,b2,…,bN]之間用一種非線性規(guī)整技術(shù)實現(xiàn)匹配。從目前來看,基于動態(tài)時間規(guī)整匹配的DTW算法可能是一個最為小巧的語音識別算法,系統(tǒng)開銷小,識別速度快,在小詞匯量的語音命令控制系統(tǒng)中是一個非常有效的算法。在訓練階段,用戶將詞匯表中的詞依次說一遍,提取出每一幀采樣數(shù)據(jù)的特征向量,并將特征向量作為模板存入模板庫中。在識別階段,提取待識語音的特征向量,然后將其依次與模板庫中的每一個模板進行相似度比較,并將相似度最高者作為結(jié)果輸出。



關(guān)鍵詞: 凌陽單片機

評論


相關(guān)推薦

技術(shù)專區(qū)

關(guān)閉