基于單片機的車載超級電容測試系統設計
伴隨著科技的進步,電動汽車技術得到迅速的發(fā)展,相比內燃機汽車,電動汽車具有零排放、高性能效率、低噪聲、低熱輻射、易操縱和易維護等優(yōu)點,將是未來汽車發(fā)展的方向,也是現行研究的熱點。 電動汽車的動力電池有如下三類:燃料電池、蓄電池和超級電容。燃料電池、蓄電池和超級電容在能量密度和功率密度上有互補性[1]。單一使用蓄電池、繞料電池或者超級電容,難以用作電動汽車的動力源。混合電池是一比較理想的解決方法,采用混合電池驅動系統,特別利用超級電容快速充放電能實現汽車制動能量回收,以及燃料電池超大能量密度支持汽車持久行駛,使得燃料電池/超級電容組成的混合驅動系統成為電動車驅動的最佳方案[2]。 對于車載用電源,為達到較高功率和能量,超級電容往往采用多塊單體串聯的形式,伴隨著電容串級的提升,電池整體電壓也隨之提高,對于車載電池,超級電容工作電壓常達到幾百伏,而這樣高峰值的電壓引起的波動會帶來強烈的電磁干擾,為電容組件的檢測帶來很大的困難,同時由于串聯超級電容往往采用大電流充放電(通常在50A-150A之間),電壓、電流變化十分迅速,如中型客車用超級電容以150A電流放電時,端電壓會在1分鐘之內由300V減到70V,而200V恒壓沖電時電流也會在幾分鐘內由50A增大到150A左右,這樣迅速的充放電速度和幅度帶來的噪音影響也是十分巨大。 針對超級電容特殊的工作狀況,本論文給出一種超級電容電池檢測系統,通過對超級電容組件進行充放電循環(huán)試驗采集其電壓、電流參數、并與標準參數對比,從而驗證出本檢測系統能在強電壓電流變化情況下快速實現較高的檢測精度。 1 檢測系統原理及各模塊實現 1.1 檢測對象 測試用超級電容采用上海奧威科技開發(fā)有限公司提供的兩組串聯不對稱電極雙電層超級電容組件。 1.2 系統原理介紹 超級電容管理系統可以實現對超級電容工作電流和電壓的實時采集,超級電容管理系統整體結構框圖如圖1所示,系統共由3個主要模塊組成:現場電壓、電流、采集與調理模塊(即采集模塊),信號隔離與MCU信號處理模塊(即中央處理模塊),電源管理模塊,采集模塊內、霍爾電壓、霍爾電流傳感器分別為超級電容電壓和電流進行現場采集,采集信號經過儀用放大、然后轉化為4mA-20mA電流信號并發(fā)送到中央處理模塊,中央處理模塊內,采集模塊發(fā)送的4mA-20mA電流信號,經過電流電壓變換后,再進行隔離放大、AD轉換并送到MCU,MCU將數據處理后通過CAN接口傳送到上位機,當檢測到數據異常時MCU輸出故障信號,以便工作人員能及時采取措施,電源管理模塊為各功能模塊提供穩(wěn)定隔離的電壓,增加RS232通信串口,以便MCU程序燒錄。 1.3 各主要模塊的實現 1.3.2 中央處理模塊實現 采集模塊輸入的4mA-20mA電流信號首先經過模擬信號二次調理單元,進行信號的變送、隔離、濾波和放大。模 二次調理后的采集信號,經過12位高速AD7891送至MCU,MCU對數據進行處理并將數據通過CAN接口傳送到上位機,單片機選用STC系列8位高速單片機STC89C58RD+。該單片機具有強抗干擾性,4kV快速脈沖干擾(EFT)和高抗靜電(ESD),可通過6000V靜電,很好地滿足了超級電容高電壓大電流的工作環(huán)境,該單片機可實現6時鐘模式,在本系統采用24M晶振情況下,單片機工作頻率可達到4MIPS,相當于普通51系列單片機運行速度的4倍。 另外,測試系統設置3通道故障診斷輸出,能顯示欠壓、過壓、過流等狀態(tài),測試系統與上位機采用抗干擾能力強、穩(wěn)定性好的CAN通信方式,保證測試系統送入上位機數據的可靠性。 實際系統有模擬15V,數字5V,模擬12V供電需求,電源管理模塊在提供系統各部分所需電壓的同時,進行模擬、數字電路隔離,從而避免兩類電壓互相影響,各部分電源入口都增加了TVS保護,防止浪涌電壓對系統的損壞,同時在諸多電源入口處設置相應的濾波電路,如在AD供電入口處增加了π形濾波電路,較好地消除電源信號對所供電路的干擾。 | |||||
本文給出一種車載超級電容測試系統,該系統采用基于磁補償原理的霍爾閉環(huán)電流、電壓傳感器采集總線信號,以抗高壓脈沖干擾的STC51高速單片機進行信號處理,并采用儀用放大、電流傳輸、模擬信號隔離、5階低通濾波等措施,盡可能地減少信號傳輸過程的噪音,通過對超級電容組件充放電測試,表明本系統具有抗干擾能力強,檢測精度高等優(yōu)點,能很好的滿足車載超級電容高電壓大電流環(huán)境下的測試要求。
電流變送器相關文章:電流變送器原理
評論