基于固體開關(guān)器件的新型高壓脈沖驅(qū)動源
3.1 單路MOSFET仿真實驗
為得到較快的脈沖驅(qū)動源輸出波形的前沿需要MOSFET的開關(guān)速度盡量快。根據(jù)對MOSFET的開關(guān)特性分析可知,從電路上考慮,加快MOSF ET的開關(guān)動作有以下途徑:
(1)提供較大的柵極驅(qū)動電流和電壓,使功率MOSFET柵極電容迅速充放電,從而減小功率MOSFET關(guān)斷時間;
(2)提供較快的驅(qū)動脈沖,從而提高功率MOSFET的關(guān)斷速度。本文引用地址:http://m.butianyuan.cn/article/176995.htm
單管MOSFET實驗電路的輸出波形如圖3所示。波形幅度約1 kV,前沿時間約為1.6 ns,脈寬約1.4μs。MOSFET單管仿真和實驗的結(jié)果表明:選擇合適的管子和過驅(qū)動電路實現(xiàn)高壓脈沖源納秒級快前沿時間是可以辦到的。單管研究的突破,為多管串并聯(lián)的組合得到更高幅度納秒脈沖源的研究帶來了希望。
3.2 多管串并聯(lián)的MOSFET仿真與電路實驗
盡管隨著MOSFET技術(shù)的發(fā)展,其單管耐壓已經(jīng)大大提高,最高可以達(dá)到千伏以上,但是對許多特殊需求來說其電壓幅度是遠(yuǎn)不夠的。脈沖源要求的輸出脈沖幅度要高達(dá)到4 kV以上,因此需多個千伏高壓場效應(yīng)管串連才能達(dá)到幅度要求。
多管串聯(lián)的需要解決的問題是:由于各管的漏電流不一致導(dǎo)致串聯(lián)時分壓不一致,有些管子可能超過其額定耐壓而損壞;多管串聯(lián)時為了做到一致驅(qū)動,需要對每個管子實行“過”驅(qū)動。要得到輸出脈沖的快前沿,必須對多管級連的每個管子的柵源極間實行電壓脈沖過驅(qū)動。因此,多管串聯(lián)的柵極驅(qū)動不能采用直接驅(qū)動,而只能采取脈沖變壓器耦合驅(qū)動?xùn)艠O的方式。高速多管串并聯(lián)的最關(guān)鍵技術(shù)是具有體積小耐高壓和納秒級瞬間大電流傳遞的驅(qū)動脈沖變壓器的研制。由于觸發(fā)脈沖要求有很快的前沿,因此要求脈沖變壓器的高頻響應(yīng)的性能要好。此外,選用MOSFET作為高速高壓脈沖源的開關(guān)要兼顧到功率特性和開關(guān)特性,因為它們是互相制約的,由于管子的輸入電容很大,需要較大能量才能驅(qū)動,故對抗電磁干擾是有利的,但因此需要大功率快脈沖的驅(qū)動,從而加大了研制難度,較易驅(qū)動也是選管的重要考慮因素。選擇高壓雪崩三極管來產(chǎn)生瞬間大電流來提高MOSFET的開關(guān)速度,每個驅(qū)動電路均由相同的5路組成,每路后接脈沖變壓器分別驅(qū)動一個MOSFET。其仿真輸出波形前沿約為1.4 ns,脈寬約為600 ns,幅度約為4 kV。
采用多管串聯(lián)方法可以提高脈沖源的其輸出脈沖幅度和功率,從而得到較大的脈沖寬度。值得注意的是:在多級串聯(lián)設(shè)計時應(yīng)避免柵極間電壓不能超過額定值,漏極電流不應(yīng)超過額定峰值電流,否則會使管子損壞。多管串聯(lián)時由于每個管子的漏電流不同,因此當(dāng)加載高壓時會造成管子分壓不致,有些管子漏源之間電壓可能超過管子額定耐壓值,從而導(dǎo)致該管損壞,引起連鎖反應(yīng)導(dǎo)致整路管子的損壞,因此設(shè)計時除盡量選擇漏電流一致的管子外,在每管漏、源之間并聯(lián)大電阻,這樣使各管分壓保持一致,防止各管因分壓不均勻而損壞。
實驗電路采用5 kV高壓場效應(yīng)管串聯(lián)分別組成前沿充電組合開關(guān),分別成形輸出脈沖的前沿,同時為達(dá)到較快的前沿速度,場效應(yīng)管柵極驅(qū)動源采用高壓雪崩管加脈沖變壓器的“過”驅(qū)動方法,脈沖源輸出負(fù)載為100 Ω的高壓電阻。根據(jù)電路原理圖設(shè)計電路,搭建實驗平臺,對各部分電路進行實驗和測試。
實際脈沖源的輸出波形如圖4所示。輸出波形幅度約4.3 kV,前沿時間小于8 ns,脈沖寬度約105 ns,晃動小于3 ns。達(dá)到了設(shè)計的要求。
4 結(jié)語
實驗結(jié)果表明:研制出基于固體開關(guān)器件快脈沖源符合高壓脈沖輸出500~4 000 V可調(diào),前沿小于10 ns,脈寬大于100 ns,晃動小于3 ns的技術(shù)指標(biāo)的高壓脈沖驅(qū)動源,滿足了設(shè)計和使用的要求。
評論