新聞中心

EEPW首頁 > EDA/PCB > 設(shè)計應(yīng)用 > 在FPGA中實施4G無線球形檢測器

在FPGA中實施4G無線球形檢測器

作者: 時間:2010-04-13 來源:網(wǎng)絡(luò) 收藏

  部分歐幾里德距離度量方程

  圖1顯示的是如何進行數(shù)學轉(zhuǎn)換,得出計算部分歐幾里德距離度量法的最終表達式。歐幾里德距離度量法是球形檢測過程的基礎(chǔ)。R代表三角形矩陣,用于處理以矩陣元rM,M開始的可選符號的迭代法。其中,M代表信道矩陣以實數(shù)表達的維數(shù)。該解決方案通過M次迭代定義出遍歷樹結(jié)構(gòu),樹的每層i對應(yīng)第i根天線的處理符號。

  實現(xiàn)樹的遍歷有幾種可選方法。在我們的實施方案中,則使用了廣度優(yōu)先搜索法,這是因為該方法采用備受歡迎的前饋結(jié)構(gòu),因此具有硬件友好特征。在每一層,該實施方案只選擇K個距離最小的幸存節(jié)點來計算擴展情況。

  球形處理天線的次序?qū)ER性能有著極大的影響。因此,在進行球形檢測前,我們的設(shè)計采用了類似于V-BLAST技術(shù)的信道重新排序技術(shù)。

  該方法通過多次迭代,計算出信道矩陣的偽逆矩陣的行范數(shù),然后確定信道矩陣最佳列檢測次序。根據(jù)迭代次數(shù),該方法可以選擇出范數(shù)最大或者最小的行。歐幾里德范數(shù)最小的逆矩陣行表示天線的影響最強,而歐幾里德范數(shù)最大的行則表示天線的影響最弱。這種新穎的方法首先處理最弱的數(shù)據(jù)流,隨后依次迭代處理功率從高到低的數(shù)據(jù)流。

   硬件應(yīng)用

  為實現(xiàn)上述系統(tǒng),我們采用了賽靈思 Virtex-5 技術(shù)。該設(shè)計流程采用賽靈思System Generator進行設(shè)計捕獲、仿真和驗證。為了支持各種不同數(shù)量的天線/用戶和調(diào)制次序,我們將設(shè)計用于要求最高的4x4、64-QAM情況下。

  我們的模型假定接收方非常清楚信道矩陣,這可以通過傳統(tǒng)的信道估算方法來實現(xiàn)。在信道重新排序和QR分解之后,我們開始使用球形。為準備使用軟輸入、軟輸出信道解碼器(如turbo解碼器),我們通過計算檢測到的比特的對數(shù)似然比(LLR)來生成軟輸出。

  該系統(tǒng)的主要架構(gòu)元素包括數(shù)據(jù)副載波處理和系統(tǒng)子模塊管理功能,以便實時處理所需數(shù)量的子載波,同時最大程度地降低處理時延。對每個數(shù)據(jù)副載波都進行了信道矩陣估算,限定了每個信道矩陣可用的處理時間。對選中的而言,其目標時鐘頻率為225MHz,通信帶寬為5MHz(相當于WiMAX系統(tǒng)中的360個數(shù)據(jù)子載波),每個信道矩陣間隔可用的處理時鐘周期數(shù)為64。

  我們采用硬件功能單元精湛的流水線和時分復用(TDM)功能,以達到WiMAX OFDM符號的實時要求。

  除了高數(shù)據(jù)率外,在架構(gòu)設(shè)計指導過程中控制子模塊時延也是一個重要的問題。我們通過引入連續(xù)信道矩陣的TDM解決了時延問題。這種方法可以延長同一信道矩陣元之間的處理時間,同時還能保持較高的數(shù)據(jù)吞吐量。構(gòu)成TDM組的信道數(shù)會隨著子模塊的不同而變化。在TDM方案中,信道矩陣求逆過程用了5個信道,而有15個信道在實數(shù)QR分解模塊中進行了時分復用。

  信道矩陣預處理

  信道矩陣預處理器確定了空分復用復合信號每一層的最佳檢測次序。該預處理器負責計算信道矩陣的偽逆矩陣范數(shù),并根據(jù)這些范數(shù),選擇待處理的下一個傳輸流。偽逆矩陣中范數(shù)最小的行對應(yīng)著最強傳輸流(檢波后噪聲放大最小),而范數(shù)最大的行對應(yīng)著質(zhì)量最差的層(檢波后噪聲放大最大)。我們的實施方案首先檢測最弱的層,然后按最低噪聲放大到最高噪聲放大的次序逐層檢測。對排序過程中的每一步,信道矩陣中相應(yīng)的列隨后會被清空,然后簡化后的矩陣進入下一級的天線排序處理流水線。

  在預處理算法中,偽逆矩陣的計算要求最高。這個過程的核心是矩陣求逆,通常通過吉文斯(Givens)旋轉(zhuǎn)進行QR分解來實現(xiàn)。常用的角度估算和平面旋轉(zhuǎn)算法(如CORDIC)會造成嚴重的系統(tǒng)時延,對我們的系統(tǒng)來說是不可接受的。因此,我們的目標是運用FPGA的嵌入式DSP資源(比如Virtex-5器件中的DSP48E),找出矢量旋轉(zhuǎn)和相位估算的替代性解決方案。

  QRD的脈動陣列結(jié)構(gòu)由兩種類型的處理單元構(gòu)成――對角線單元或邊界單元和非對角線單元或內(nèi)部單元。邊界單元執(zhí)行矢量函數(shù),可以生成陣列內(nèi)部單元使用的旋轉(zhuǎn)角度。要想得到想要的旋轉(zhuǎn)角度,可以把非對角線單元中的值與對角線單元中的共軛復數(shù)相乘,然后除以復數(shù)的倒數(shù)即可。相除實際是用乘法的方式完成的,即在觀察到函數(shù)接近線性的時候,乘以根據(jù)定義的間隔的多項式近似值計算出的倒數(shù)。圖2顯示了采用這種近似值在對角線脈動單元中完成這種復雜旋轉(zhuǎn)的信號流程圖。

  發(fā)送到非對角線單元中的數(shù)據(jù)是旋轉(zhuǎn)矢量的同相部分和正交部分除以相應(yīng)的近似值得出的結(jié)果。我們不僅通過在對角線單元和非對角線單元采用流水線架構(gòu)實現(xiàn)了高數(shù)據(jù)吞吐量,同時還通過對跨5個信道的硬件進行時分復用的方式控制了近似值模塊和復雜乘法器引起的時延。

  圖2 對角線脈動單元結(jié)構(gòu)圖



關(guān)鍵詞: FPGA 4G無線球 檢測器

評論


相關(guān)推薦

技術(shù)專區(qū)

關(guān)閉