基于STM32的EMS液晶顯示觸摸屏設計方案
3 硬件連接設計方案
3.1 總體構(gòu)架
液晶觸摸顯示屏系統(tǒng)主要由微控制器STM32F103F103、TFT液晶屏模塊、四線電阻觸摸屏以及與外界通信的CAN總線接口組成。硬件模塊連接如圖3所示,其中四線電阻觸摸屏的觸摸檢測裝置安裝在TFT液晶屏前面用于檢測用戶觸摸的位置,本方案利用STM32F103 自帶A/D 轉(zhuǎn)換功能,由STM32F103實現(xiàn)觸摸屏控制器的功能來直接控制四線電阻觸摸屏,檢測觸摸信息并計算出觸點坐標。然后STM32F103通過I/O接口與TFT液晶屏模塊通信,將處理好的有效信息通過TFT 液晶屏顯示出來。由于STM32F103內(nèi)置CAN 總線控制器所以CAN總線接口可以直接從STM32F103的管腳引出,用來與EMS進行通信,完成現(xiàn)實信息采集,設置參數(shù)等功能。
圖3 方案總體框圖
3.2 STM32F103F103與四線電阻觸摸屏的接口電路
如圖4所示,STM32F103F103與四線電阻觸摸屏直接通過自身的I/O口連接,實現(xiàn)觸摸屏控制器功能。其中PA8、PA9、PA10、PA11分別作為四個三極管的控制端,通過控制三極管通斷,來控制四線觸摸屏的Y+、Y-、X+、X-.PA1,PA2是兩個A/D轉(zhuǎn)換通道,分別連接Y+和X+用于計算觸摸點的X和Y坐標。PA3連接內(nèi)部中斷用于檢測觸摸屏是否有觸摸動作。觸摸屏平時運行時,令PA8、PA9、PA11輸出0,PA10=1,即只讓VT2導通。當有觸摸動作時,D1導通給PA3一個中斷信號,STM32F103接收到中斷請求后立即置PA8=1,導通VT1,這樣在Y+、Y-方向上就加上電壓,同時啟動A/D轉(zhuǎn)換通道PA2,通過輸入X+上電壓計算出觸摸點的Y坐標,然后同理令PA8、PA10為0,PA9、PA11為1,啟動A/D轉(zhuǎn)換通道PA1,通過輸入Y+上電壓計算出觸摸點X的坐標。
圖4 STM32F103與四線電阻觸摸屏接口電路
3.3 STM32F103F103與TFT液晶屏模塊控制器的接口電路
如圖5所示,STM32F103F103通過I/O 接口與TFT液晶模塊相連接,雖然很多的TFT液晶模塊中內(nèi)置的液晶屏控制器都支持SPI 接口通信(如ILI9325)但由于SPI傳輸速度較慢不利于液晶數(shù)據(jù)的快速傳輸,因此很多液晶模塊都選擇采用并口通信。
其中PB0-PB15分別與D0-D15相連作為數(shù)據(jù)通信口,PA0、PA4、PA5、PA6、PA7 分別連接RESET、CS、RS、WR、RD,作為控制口,實現(xiàn)復位、片選、指令數(shù)據(jù)切換、讀寫等控制功能。
圖5 STM32F103F103與TFT液晶模塊接口電路
4 軟件設計
軟件部分的編程采用C語言,一方面主要完成STM32F103對I/O 管腳的配置,用來實現(xiàn)對四線電阻觸摸屏端子狀態(tài)的控制,通過中斷方式檢測是否有觸摸信息,配置A/D轉(zhuǎn)換通道,讀入電壓根據(jù)公式計算出觸點坐標。另一方面主要完成通過與TFT液晶模塊的通信控制,實現(xiàn)觸摸點坐標與液晶屏坐標的對應并有效完成顯示任務。軟件的開發(fā)環(huán)境是MDK,MDK 將ARM 開發(fā)工具RealView DevelopmentSuite(簡稱為RVDS)的編譯器RVCT與Keil的工程管理、調(diào)試仿真工具集成在一起,支持ARM7、ARM9和最新的Cortex-M3核處理器,自動配置啟動代碼,集成Flash燒寫模塊,強大的Simulation設備模擬,性能分析等功能,與ARM 之前的工具包ADS等相比,RealView編譯器的最新版本可將性能改善超過20%.具體流程如圖6所示。
圖6 程序流程圖
5 結(jié)束語
本文提出了基于STM32F103F103單片機的EMS液晶顯示觸摸屏的設計方案。STM32F103F103的高速、低耗的優(yōu)越性能完全可以達到觸摸屏的主控制芯片要求,TFT液晶顯示器可以滿足更復雜、多彩、靈活的顯示任務,符合顯示屏性能不斷攀升的發(fā)展趨勢。本設計充分利用了STM32F103芯片的優(yōu)勢,拋棄了傳統(tǒng)觸摸屏控制器控制觸摸屏的方案,利用自身A/D完成了觸摸屏功能,本方案大大簡化了硬件電路結(jié)構(gòu),通信更可靠,編程也更加簡潔,最終既能達到EMS顯示要求,出色地顯示和設置了系統(tǒng)所需要的數(shù)據(jù),又能降低系統(tǒng)的成本,通過實際使用達到了良好的效果。鑒于當前電動車的快速發(fā)展,本方案可以擁有不錯的應用前景。
更多資訊請關注:21ic照明頻道
評論