電能質(zhì)量監(jiān)測的現(xiàn)狀及展望
2.22.2電能質(zhì)量控制策略與技術(shù)
2.2.1幾種電能質(zhì)量控制策略
① PID控制:這是應(yīng)用最為廣泛的調(diào)節(jié)器控制規(guī)律,其結(jié)構(gòu)簡單、穩(wěn)定性好、工作可靠、調(diào)整方便,易于在工程中實(shí)現(xiàn)。當(dāng)被控對象的結(jié)構(gòu)和參數(shù)不能完全掌握,或得不到精確的數(shù)學(xué)模型時,應(yīng)用PID 控制技術(shù)最為方便。其缺點(diǎn)是:響應(yīng)有超調(diào),對系統(tǒng)參數(shù)攝動和抗負(fù)載擾動能力較差。
② 空間矢量控制:空間矢量控制也是一種較為常規(guī)的控制方法。其原理是:將基于三相靜止坐標(biāo)系(abc)的交流量經(jīng)過派克變換得到基于旋轉(zhuǎn)坐標(biāo)系(dq)的直流量從而實(shí)現(xiàn)解耦控制。常規(guī)的矢量控制方法一般采用DSP 進(jìn)行處理,具有良好的穩(wěn)態(tài)性能與暫態(tài)性能。也可采用簡化算法以縮短實(shí)時運(yùn)算時間。
③ 模糊邏輯控制:知道被控對象精確的數(shù)學(xué)模型是使用經(jīng)典控制理論的頻域法和現(xiàn)代控制理論的“時域法”設(shè)計控制器的前提條件。模糊控制作為一種新的智能控制方法,無需對系統(tǒng)建立精確的數(shù)學(xué)模型。它通過模擬人的思維和語言中對模糊信息的表達(dá)和處理方式,對系統(tǒng)特征進(jìn)行模糊描述,來降低獲取系統(tǒng)動態(tài)和靜態(tài)特征量付出的代價。
④ 非線性魯棒控制:超導(dǎo)儲能裝置 (SMES)實(shí)際運(yùn)行時會受到各種不確定性的影響,因此可通過對SMES的確定性模型引入干擾,得到非線性二階魯棒模型。對此非線性模型,既可應(yīng)用反饋線性化方法使之全局線性化,再利用所有線性系統(tǒng)的控制規(guī)律進(jìn)行控制,也可直接采用魯棒控制理論設(shè)計控制器。
2.2.2 FACTS技術(shù)
FACTS,即基于電力電子控制技術(shù)的靈活交流輸電,是上世紀(jì)80年代末期由美國電力研究院(EPRI)提出的。它通過控制電力系統(tǒng)的基本參數(shù)來靈活控制系統(tǒng)潮流,使輸送容量更接近線路的熱穩(wěn)極限。采用FACTS技術(shù)的核心目的是加強(qiáng)交流輸電系統(tǒng)的可控性和增大其電力傳輸能力。
目前有代表性的FACTS裝置主要有:可控串聯(lián)補(bǔ)償電容器、靜止無功補(bǔ)償器、晶閘管控制的串聯(lián)投切電容器、統(tǒng)一潮流控制器等。
2.2.3用戶電力(Custom Power)技術(shù)
用戶電力技術(shù)就是將電力電子技術(shù)、微處理機(jī)技術(shù)、自動控制技術(shù)等運(yùn)用于中低壓配電系統(tǒng)和用電系統(tǒng)中,其目的是加強(qiáng)配電系統(tǒng)的供電可靠性,并減小諧波畸變,改善電能質(zhì)量。該技術(shù)的核心器件IGBT比GTO具有更快的開關(guān)頻率,并且關(guān)斷容量已達(dá)MVA級,因此DFACTS裝置具有更快的響應(yīng)特性。
目前主要的FACTS裝置有:有源濾波器(APF)、動態(tài)電壓恢復(fù)器(DVR)、配電系統(tǒng)用靜止無功補(bǔ)償器(D-STATCOM)、固態(tài)切換開關(guān)(SSTS)等。
2.3 2.3電能質(zhì)量監(jiān)測裝置
由于電能質(zhì)量需要監(jiān)測的量很多而且大多是高度畸變的,傳統(tǒng)的方法是采用模擬信號的分析,監(jiān)測不同的電能質(zhì)量指標(biāo)使用不同的儀表。如傳統(tǒng)的測量電壓和電流有效值的電壓表、電流表,測量功率損耗的有功表、無功表,測量頻率的頻率表,還有諧波表、三相不平衡度計、電壓波動和閃變儀[5] 。此類儀器的不足之處是可監(jiān)測的指標(biāo)少,通用性差、精度較低、自動化程度較低。
采用微處理器為核心的新一代數(shù)字式儀表已被廣泛應(yīng)用,核心由DSP(Digital Signal Proceeding)所構(gòu)成。一般都可和計算機(jī)相連,構(gòu)成數(shù)據(jù)處理能力較強(qiáng)的PC+DSP主從式結(jié)構(gòu),具有顯示、存儲、通信、人機(jī)對話等功能。對一個站點(diǎn)進(jìn)行監(jiān)測,有較好的效果。
目前電能質(zhì)量監(jiān)測設(shè)備的發(fā)展趨勢傾向于采用永久性的固定設(shè)備對現(xiàn)場數(shù)據(jù)進(jìn)行在線監(jiān)測,對于固定電能質(zhì)量監(jiān)測設(shè)備而言,需要綜合考慮成本和性能進(jìn)行專門的研制。基于微處理器的智能化電能質(zhì)量在線監(jiān)測設(shè)備采用嵌入式系統(tǒng)和數(shù)字信號處理技術(shù)在設(shè)計上具有在線監(jiān)測、智能化、網(wǎng)絡(luò)化、實(shí)時性好和成本低的特點(diǎn)?;陔pCPU的嵌入式系統(tǒng)將嵌入式DSP處理器和嵌入式微控制器相結(jié)合,通過2個CPU擴(kuò)充系統(tǒng)資源,共同分擔(dān)系統(tǒng)負(fù)荷,同時DSP作為高速處理器件也利于保證系統(tǒng)的實(shí)時性。這種雙CPU系統(tǒng)結(jié)構(gòu)和DSP的高速處理能力對于保證系統(tǒng)實(shí)現(xiàn)在線監(jiān)測、智能化、網(wǎng)絡(luò)化等強(qiáng)大功能而又不犧牲實(shí)時性起到了關(guān)鍵作用。它具有在線監(jiān)測、精度高、升級潛力大、實(shí)時性好、體積小、成本低的特點(diǎn),既適用于現(xiàn)場的測量分析,也適用于長期的在線監(jiān)測。
2.42.4電能質(zhì)量分析方法
電力系統(tǒng)中的各種擾動引起的電能質(zhì)量問題主要可分為穩(wěn)態(tài)事件和暫態(tài)事件兩大類。穩(wěn)態(tài)電能質(zhì)量問題以波形畸變?yōu)樘卣?,主要包括諧波、間諧波、波形下陷及噪聲等;暫態(tài)事件通常是以頻譜和暫態(tài)持續(xù)時間為特征,可分為脈沖暫態(tài)和振蕩暫態(tài)兩大類[6]。
電能質(zhì)量的分析方法主要有時域仿真法、頻域分析方法和基于變換的方法。
1 時域仿真法
時域仿真方法在電能質(zhì)量分析中的應(yīng)用最為廣泛,其最主要的用途是利用各種時域仿真程序?qū)﹄娔苜|(zhì)量問題中的各種暫態(tài)現(xiàn)象進(jìn)行研究。對于電壓下跌、電壓上升、電壓中斷等有關(guān)電能質(zhì)量暫態(tài)問題,由于其持續(xù)時間短、發(fā)生時間不確定、對頻域分析提出了較高的要求,較多采用時域仿真方法。
目前EMTP、EMTDC、NETOMAC等系統(tǒng)暫態(tài)仿真程序[7]和SPICE、PSPICE、SABER等電力電子仿真程序在研究中得到了廣泛的應(yīng)用,有的已經(jīng)被做成商業(yè)軟件。
采用時域仿真計算的缺點(diǎn)是仿真步長的選取決定了可模擬的最大頻率范圍,因此必須事先知道暫態(tài)過程的頻率覆蓋范圍。此外,在模擬開關(guān)的開合過程時,還會引起數(shù)值振蕩。
評論