新聞中心

EEPW首頁 > 嵌入式系統(tǒng) > 設(shè)計(jì)應(yīng)用 > 工程師教你如何設(shè)計(jì)D類放大器

工程師教你如何設(shè)計(jì)D類放大器

作者: 時(shí)間:2016-12-21 來源:網(wǎng)絡(luò) 收藏

  輸出級(jí)功率效率Eff定義如下:

  輸出級(jí)功率效率Eff

  在箝位開始之初,A類放大器的Eff= 25%,B類放大器的Eff=78.5%,D類放大器的Eff=90%(見圖5)。對(duì)于A類放大器和B類放大器,這些最佳例證經(jīng)常在教科書中引用。

  輸出功率比較

  圖5. A類、B類和D類放大器輸出級(jí)的功率效率比較

  功耗和功率效率的差異在中等功率水平處很大。這對(duì)于音頻很重要,因?yàn)榇笠袅恳魳返拈L期平均功率水平要比達(dá)到PLOAD max的瞬時(shí)峰值水平低很多(為其1/5到1/20,取決于音樂類型)。因而,對(duì)于音頻放大器,[PLOAD = 0.1×PLOAD max] 是一個(gè)合理的平均功率水平,按照這個(gè)功率水平評(píng)估PDISS。在這個(gè)功率水平,D類放大器輸出級(jí)的功耗是B類放大器的1/9,是A類放大器的1/107。

  對(duì)于10 W PLOAD max的音頻放大器,1 W的平均PLOAD認(rèn)為是保真音頻功率水平。在這種條件下,D類放大器輸出級(jí)內(nèi)部功耗為282 mW,對(duì)于B類放大器為2.53 W,對(duì)于A類放大器為30.2 W。在這種情況下,D類放大器的效率從高功率條件下的90%減少到78%。但即使是78%也要遠(yuǎn)優(yōu)于B類放大器和A類放大器,它們的效率分別為28%和3%。

  這些差別對(duì)于系統(tǒng)設(shè)計(jì)具有重要的影響。對(duì)于1 W以上的功率水平,線性輸出級(jí)的過大的功耗要求采用有效的散熱方法以避免不可接受的發(fā)熱,通常是使用大金屬板作為散熱板,或用風(fēng)扇促進(jìn)放大器空氣散熱。如果放大器是集成電路(IC),就可能需要大尺寸、高成本的增強(qiáng)散熱封裝以促進(jìn)熱傳導(dǎo)。這些考慮在消費(fèi)類產(chǎn)品中很麻煩,例如平板電視,其印制電路板面積(PCB)面積很寶貴,或汽車音響,其發(fā)展趨勢(shì)是在固定空間內(nèi)增加通道數(shù)。

  對(duì)于1 W以下的功率水平,處理浪費(fèi)的功率可能比處理散熱還困難。如果是電池供電,線性放大器輸出級(jí)消耗電池電荷要比D類放大器快。在上面的例子中,D類放大器輸出級(jí)耗費(fèi)的電源電流是B類放大器的1/2.8,是A類放大器的1/23.6,因此它們用于蜂窩電話,PDA和MP3播放器等產(chǎn)品在電池的壽命方面有很大差別。

  迄今為止,我們?yōu)榱撕唵纹鹨姡皇菍iT注重放大器輸出級(jí)的分析。但是當(dāng)考慮放大器系統(tǒng)中所有功耗時(shí),線性放大器要比低輸出功率D 類放大器更有利。原因是在低功率水平條件下,產(chǎn)生和調(diào)制開關(guān)波形所需要的功率會(huì)很大。因而,精心設(shè)計(jì)的低中功率的AB類放大器的寬系統(tǒng)靜態(tài)功耗優(yōu)勢(shì)使得它們可與D類放大器相競爭。雖然對(duì)于寬的輸出功率范圍,毫無疑問D類放大器具有低功耗優(yōu)勢(shì)。

  D類放大器術(shù)語以及差分方式與單端方式的比較

  圖3示出D類放大器中輸出晶體管和LC濾波器的差分實(shí)現(xiàn)。這個(gè)H橋具有兩個(gè)半橋開關(guān)電路,它們?yōu)闉V波器提供相反極性的脈沖,其中濾波器包含兩個(gè)電感器、兩個(gè)電容器和揚(yáng)聲器。每個(gè)半橋包含兩個(gè)輸出晶體管,一個(gè)是連接到正電源的高端晶體管MH,另一個(gè)是連接到負(fù)電源的低端晶體管ML。圖3中示出的是高端pMOS晶體管。經(jīng)常采用高端nMOS晶體管以減小尺寸和電容,但需要特殊的柵極驅(qū)動(dòng)方法控制它們(見深入閱讀資料1)。

  全H橋電路通常由單電源(VDD)供電,接地端用于接負(fù)電源端(VSS)。對(duì)于給定的VDD和VSS,H橋電路的差分方式提供的輸出信號(hào)是單端方式的兩倍,并且輸出功率是其四倍。半橋電路可由雙極性電源或單極性電源供電,但單電源供電會(huì)對(duì)DC偏置電壓產(chǎn)生潛在的危害,因?yàn)橹挥蠽DD/2電壓施加到過揚(yáng)聲器,除非加一個(gè)隔直電容器。

  “激勵(lì)”的半橋電路電源電壓總線可以超過LC濾波器的大電感器電流產(chǎn)生的標(biāo)稱值。在VDD和VSS之間加大的去耦電容器可以限制激勵(lì)dV/dt的瞬態(tài)變化。全橋電路不受總線激勵(lì)的影響,因?yàn)殡姼衅麟娏鲝囊粋€(gè)半橋流入,從另一個(gè)半橋流出,從而使本地電流環(huán)路對(duì)電源干擾極小。

  音頻D類放大器設(shè)計(jì)因素

  雖然利用D類放大器的低功耗優(yōu)點(diǎn)有力推動(dòng)其音頻應(yīng)用,但是有一些重要問題需要設(shè)計(jì)工程師考慮,包括:

  ? 輸出晶體管尺寸選擇

  ? 輸出級(jí)保護(hù)

  ? 音質(zhì)

  ? 調(diào)制方法

  ? 抗電磁干擾( EMI)

  ? LC濾波器設(shè)計(jì)

  ? 系統(tǒng)成本

  輸出晶體管尺寸選擇

  選擇輸出晶體管尺寸是為了在寬范圍信號(hào)調(diào)理范圍內(nèi)降低功耗。當(dāng)傳導(dǎo)大的IDS時(shí)保證VDS很小,要求輸出晶體管的導(dǎo)通電阻(RON)很?。ǖ湫椭禐?.1Ω~0.2Ω)。但這要求大晶體管具有很大的柵極電容(CG)。開關(guān)電容柵極驅(qū)動(dòng)電路的功耗為CV2f,其中C是電容,V是充電期間的電壓變化,f是開關(guān)頻率。如果電容或頻率太高,這個(gè)“開關(guān)損耗”就會(huì)過大,所以存在實(shí)際的上限。因此,晶體管尺寸的選擇是傳導(dǎo)期間將IDS×VDS損失降至最小與將開關(guān)損耗降至最小之間的一個(gè)折衷。在高輸出功率情況下,功耗和效率主要由傳導(dǎo)損耗決定,而在低輸出功率情況下,功耗主要由開關(guān)損耗決定。功率晶體管制造商試圖將其器件的RON×CG減至最小以減少開關(guān)應(yīng)用中的總功耗,從而提供開關(guān)頻率選擇上的靈活性。

  輸出級(jí)保護(hù)

  輸出級(jí)必須加以保護(hù)以免受許多潛在危險(xiǎn)條件的危害:

  過熱: 盡管D類放大器輸出級(jí)功耗低于線性放大器,但如果放大器長時(shí)間提供非常高的功率,仍會(huì)達(dá)到危害輸出晶體管的水平。為了防止過熱危險(xiǎn),需要溫度監(jiān)視控制電路。在簡單的保護(hù)方案中,當(dāng)通過一個(gè)片內(nèi)傳感器測(cè)量的溫度超過熱關(guān)斷安全閾值時(shí),輸出級(jí)關(guān)斷,并且一直保持到冷卻下來。除了簡單的有關(guān)溫度是否已經(jīng)超過關(guān)斷閾值的二進(jìn)制指示以外,傳感器還可提供其它的溫度信息。通過測(cè)量溫度,控制電路可逐漸減小音量水平,減少功耗并且很好地將溫度保持在限定值范圍內(nèi),而不是在熱關(guān)斷期間強(qiáng)制不發(fā)出聲音。

  輸出晶體管過流: 如果輸出級(jí)和揚(yáng)聲器端正確連接,輸出晶體管呈低導(dǎo)通電阻狀態(tài)不會(huì)出現(xiàn)問題,但如果這些結(jié)點(diǎn)不注意與另一個(gè)結(jié)點(diǎn)或正、負(fù)電源短路,會(huì)產(chǎn)生巨大的電流。如果不經(jīng)核查,這個(gè)電流會(huì)破壞晶體管或外圍電路。因此,需要電流檢測(cè)輸出晶體管保護(hù)電路。在簡單保護(hù)方案中,如果輸出電流超過安全閾值,輸出級(jí)關(guān)斷。在比較復(fù)雜的方案中。

  電流傳感器輸出反饋到放大器中,試圖限制輸出電流到一個(gè)最大安全水平,同時(shí)允許放大器連續(xù)工作而無須關(guān)斷。在這個(gè)方案中,如果限流保護(hù)無效,最后的手段是強(qiáng)制關(guān)斷。有效的限流器還可在由于揚(yáng)聲器共振出現(xiàn)暫時(shí)的大瞬態(tài)電流時(shí)保持放大器安全工作。

  欠壓: 大多數(shù)開關(guān)輸出級(jí)電路只有當(dāng)正電源電壓足夠高時(shí)才能正常工作。如果電源電壓太低,出現(xiàn)欠壓情況,就會(huì)出現(xiàn)問題。這個(gè)問題通常通過欠壓封鎖電路來處理,只有當(dāng)電源電壓大于欠壓封鎖閾值時(shí)才允許輸出級(jí)工作。

  輸出晶體管導(dǎo)通時(shí)序 : MH和ML輸出級(jí)晶體管(見圖6)具有非常低的導(dǎo)通電阻。因此,避免MH和ML同時(shí)導(dǎo)通的情況很重要,因?yàn)樗鼤?huì)產(chǎn)生一個(gè)從VDD到VSS的低電阻路徑通過晶體管,從而產(chǎn)生很大的沖擊電流。最好的情況是晶體管發(fā)熱并且消耗功率;最壞的情況是晶體管可能被毀壞。晶體管的先開后合控制通過在一個(gè)晶體管導(dǎo)通之前強(qiáng)制兩個(gè)晶體管都斷開以防止沖擊電流情況發(fā)生。兩個(gè)晶體管都斷開的時(shí)間間隔稱為非重疊時(shí)間或死區(qū)時(shí)間。

  輸出晶體管

  圖6. 輸出級(jí)晶體管的先合后開開關(guān)

  音質(zhì)

  在D類放大器中,要獲得好的總體音質(zhì)必須解決幾個(gè)問題。

  “咔嗒”聲:當(dāng)放大器導(dǎo)通或斷開時(shí)發(fā)出的咔嗒聲非常討厭。但不幸的是,它們易于引入到D類放大器中,除非當(dāng)放大器靜噪或非靜噪時(shí)特別注意調(diào)制器狀態(tài)、輸出級(jí)時(shí)序和LC濾波器狀態(tài)。

  信噪比(SNR):為了避免放大器本底噪聲產(chǎn)生的嘶嘶聲,對(duì)于便攜式應(yīng)用的低功率放大器,SNR通常應(yīng)當(dāng)超過90 dB,對(duì)于中等功率設(shè)計(jì)SNR應(yīng)當(dāng)超過100 dB,對(duì)于大功率設(shè)計(jì)應(yīng)當(dāng)超過110 dB。這對(duì)于各種放大器是可以達(dá)到的,但在放大器設(shè)計(jì)期間必須跟蹤具體的噪聲源以保證達(dá)到滿意的總體SNR。

  失真機(jī)理: 失真機(jī)理包括調(diào)制技術(shù)或調(diào)制器實(shí)現(xiàn)中的非線性,以及為了解決沖擊電流問題輸出級(jí)所采用的死區(qū)時(shí)間。

  在D類調(diào)制器輸出脈寬中通常對(duì)包含音頻信號(hào)幅度的信息進(jìn)行編碼。用于防止輸出級(jí)沖擊電流附加的死區(qū)時(shí)間會(huì)引入非線性時(shí)序誤差,它在揚(yáng)聲器產(chǎn)生的失真與相對(duì)于理想脈沖寬度的時(shí)序誤差成正比。用于避免沖擊最短的死區(qū)時(shí)間對(duì)于將失真減至最小經(jīng)常是最有利的;欲了解優(yōu)化開關(guān)輸出級(jí)失真性能的詳細(xì)設(shè)計(jì)方法請(qǐng)參看深入閱讀資料2。

  其它失真源包括:輸出脈沖上升時(shí)間和下降時(shí)間的不匹配,輸出晶體管柵極驅(qū)動(dòng)電路時(shí)序特性的不匹配,以及LC低通濾波器元器件的非線性。

  電源抑制 (PSR): 在圖2所示的電路中,電源噪聲幾乎直接耦合到輸出揚(yáng)聲器,具有很小的抑制作用。發(fā)生這種情況是因?yàn)檩敵黾?jí)晶體管通過一個(gè)非常低的電阻將電源連接到低通濾波器。濾波器抑制高頻噪聲,但所有音頻頻率都會(huì)通過,包括音頻噪聲。關(guān)于對(duì)單端和差分開關(guān)輸出級(jí)電路電源噪聲影響的詳細(xì)說明請(qǐng)參看深入閱讀材料3。

  如果不解決失真問題和電源問題,就很難達(dá)到PSR優(yōu)于10 dB,或總諧波失真(THD)優(yōu)于0.1%。甚至更壞的情況,THD趨向于有害音質(zhì)的高階失真。

  幸運(yùn)的是,有一些好的解決方案來解決這些問題。使用具有高環(huán)路增益的反饋(正如在許多線性放大器設(shè)計(jì)中所采用的)幫助很大。LC濾波器輸入的反饋會(huì)大大提高PSR并且衰減所有非LC濾波器失真源。LC濾波器非線性可通過在反饋環(huán)路中包括的揚(yáng)聲器進(jìn)行衰減。在精心設(shè)計(jì)的閉環(huán)D類放大器中,可以達(dá)到 PSR 》 60 dB和THD <0.01%的高保真音質(zhì)。

  但反饋使得放大器的設(shè)計(jì)變得復(fù)雜,因?yàn)楸仨殱M足環(huán)路的穩(wěn)定性(對(duì)于高階設(shè)計(jì)是一種很復(fù)雜的考慮)。連續(xù)時(shí)間模擬反饋對(duì)于捕獲有關(guān)脈沖時(shí)序誤差的重要信息也是必需的,因此控制環(huán)路必須包括模擬電路以處理反饋信號(hào)。在集成電路放大器實(shí)現(xiàn)中,這會(huì)增加管芯成本。



評(píng)論


技術(shù)專區(qū)

關(guān)閉