新聞中心

EEPW首頁 > 模擬技術(shù) > 設(shè)計應(yīng)用 > [組圖]精密的單電源光檢測電路設(shè)計方案

[組圖]精密的單電源光檢測電路設(shè)計方案

作者: 時間:2011-10-16 來源:網(wǎng)絡(luò) 收藏

摘 要 論述了光電二極管檢測電路的組成及工作原理,給出了光電二極管、前置運放、反饋網(wǎng)絡(luò)的SPICE子模型及系統(tǒng)模型;著重分析了系統(tǒng)穩(wěn)定性、噪聲特性以及提高穩(wěn)定性和減小噪聲的方法。提供了采用通用電路模擬軟件SPICE進(jìn)行相關(guān)性能模擬的實例。

關(guān)鍵詞 SPICE模擬 穩(wěn)定性 噪聲特性

光電二極管及其相關(guān)的前置放大器是基本物理量和電子量之間的橋梁。許多應(yīng)用領(lǐng)域需要檢測光亮度并將之轉(zhuǎn)換為有用的數(shù)字信號。可用于CT掃描儀、血液分析儀、煙霧檢測器、位置傳感器、紅外高溫計和色譜分析儀等系統(tǒng)中。在這些電路中,光電二極管產(chǎn)生一個與照明度成比例的微弱電流。而前置放大器將光電二極管傳感器的電流輸出信號轉(zhuǎn)換為一個可用的電壓信號??雌饋砗孟笥靡粋€光電二極管、一個放大器和一個電阻便能輕易地實現(xiàn)簡單的電流至電壓的轉(zhuǎn)換,但這種應(yīng)用電路卻提出了一個問題的多個側(cè)面。為了進(jìn)一步擴(kuò)展應(yīng)用前景,電路還在電路的運行、穩(wěn)定性及噪聲處理方面顯示出新的限制。

本文將分析并通過模擬驗證這種典型應(yīng)用電路的穩(wěn)定性及噪聲性能。首先探討電路工作原理,然后如果讀者有機(jī)會的話,可以運行一個SPICE模擬程序,它會很形象地說明電路原理。以上兩步是完成設(shè)計過程的開始。第三步也是最重要的一步(本文未作討論)是制作實驗?zāi)M板。

1 的基本組成和工作原理

設(shè)計一個的光檢測電路最常用的方法是將一個光電二極管跨接在一個CMOS輸入放大器的輸入端和反饋環(huán)路的電阻之間。這種方式的電路示于圖1中。

在該電路中,光電二極管工作于光致電壓(零偏置)方式。光電二極管上的入射光使之產(chǎn)生的電流ISC從負(fù)極流至正極,如圖中所示。由于CMOS放大器反相輸入端的輸入阻抗非常高,二極管產(chǎn)生的電流將流過反饋電阻RF。輸出電壓會隨著電阻RF兩端的壓降而變化。

圖中的放大系統(tǒng)將電流轉(zhuǎn)換為電壓,即

VOUT = ISC ×RF (1)

圖1 光電二極管檢測電路

式(1)中,VOUT是運算放大器輸出端的電壓,單位為V;ISC是光電二極管產(chǎn)生的電流,單位為A;RF是放大器電路中的反饋電阻,單位為W 。圖1中的CRF是電阻RF的寄生電容和電路板的分布電容,且具有一個單極點為1/(2p RF CRF)。

用SPICE可在一定頻率范圍內(nèi)模擬從光到電壓的轉(zhuǎn)換關(guān)系。模擬中可選的變量是放大器的反饋元件RF。用這個模擬程序,激勵信號源為ISC,輸出端電壓為VOUT。

此例中,RF的缺省值為1MW ,CRF為0.5pF。理想的光電二極管模型包括一個二極管和理想的電流源。給出這些值后,傳輸函數(shù)中的極點等于1/(2p RFCRF),即318.3kHz。改變RF可在信號頻響范圍內(nèi)改變極點。

遺憾的是,如果不考慮穩(wěn)定性和噪聲等問題,這種簡單的方案通常是注定要失敗的。例如,系統(tǒng)的階躍響應(yīng)會產(chǎn)生一個其數(shù)量難以接受的振鈴輸出,更壞的情況是電路可能會產(chǎn)生振蕩。如果解決了系統(tǒng)不穩(wěn)定的問題,輸出響應(yīng)可能仍然會有足夠大的“噪聲”而得不到可靠的結(jié)果。

實現(xiàn)一個穩(wěn)定的光檢測電路從理解電路的變量、分析整個傳輸函數(shù)和設(shè)計一個可靠的電路方案開始。設(shè)計時首先考慮的是為光電二極管響應(yīng)選擇合適的電阻。第二是分析穩(wěn)定性。然后應(yīng)評估系統(tǒng)的穩(wěn)定性并分析輸出噪聲,根據(jù)每種應(yīng)用的要求將之調(diào)節(jié)到適當(dāng)?shù)乃健?/SPAN>

這種電路中有三個設(shè)計變量需要考慮分析,它們是:光電二極管、放大器和R//C反饋網(wǎng)絡(luò)。首先選擇光電二極管,雖然它具有良好的光響應(yīng)特性,但二極管的寄生電容將對電路的噪聲增益和穩(wěn)定性有極大的影響。另外,光電二極管的并聯(lián)寄生電阻在很寬的溫度范圍內(nèi)變化,會在溫度極限時導(dǎo)致不穩(wěn)定和噪聲問題。為了保持良好的線性性能及較低的失調(diào)誤差,運放應(yīng)該具有一個較小的輸入偏置電流(例如CMOS工藝)。此外,輸入噪聲電壓、輸入共模電容和差分電容也對系統(tǒng)的穩(wěn)定性和整體精度產(chǎn)生不利的影響。最后,R//C反饋網(wǎng)絡(luò)用于建立電路的增益。該網(wǎng)絡(luò)也會對電路的穩(wěn)定性和噪聲性能產(chǎn)生影響。

2 光檢測電路的SPICE模型

2.1 光電二極管的SPICE模型

一個光電二極管有兩種工作方式:光致電壓和光致電導(dǎo),它們各有優(yōu)缺點。在這兩種方式中,光照射到二極管上產(chǎn)生的電流ISC方向與通常的正偏二極管正常工作時的方向相反,即從負(fù)極到正極。

光電二極管的工作模型示于圖2中,它由一個被輻射光激發(fā)的電流源、理想的二極管、結(jié)電容和寄生的串聯(lián)及并聯(lián)電阻組成。

圖2 非理想的光電二極管模型

當(dāng)光照射到光電二極管上時,電流便產(chǎn)生了,不同二極管在不同環(huán)境中產(chǎn)生的電流ISC、具有的CPD、RPD值以及圖中放大器輸出電壓為0~5V所需的電阻RF值均不同,例如SD-020-12-001硅光電二極管,在正常直射陽光(1000fc[英尺-燭光])時,ISC=30m A、CPD=50pF、RPD=1000MW 、RF=167kW ;睛朗白天(100fc)時,ISC = 3m A、CPD=50pF、RPD= 1000 MW 、RF=1.67MW ;桌上室內(nèi)光(1.167fc)時,ISC=35nA、CPD=50pF、RPD=1000MW 、RF=142.9MW ??梢姽庹詹煌瑫r,ISC有顯著變化,而CPDRPD基本不變。

工作于光致電壓方式下的光電二極管上沒有壓降,即為零偏置。在這種方式中,為了光靈敏度及線性度,二極管被應(yīng)用到最大限度,并適用于應(yīng)用領(lǐng)域。影響電路性能的關(guān)鍵寄生元件為CPDRPD,它們會影響光檢測電路的頻率穩(wěn)定性和噪聲性能。

結(jié)電容CPD是由光電二極管的P型和N型材料之間的耗盡層寬度產(chǎn)生的。耗盡層窄,結(jié)電容的值大。相反,較寬的耗盡層(如PIN光電二極管)會表現(xiàn)出較寬的頻譜響應(yīng)。硅二極管結(jié)電容的數(shù)值范圍大約從20或25pF到幾千pF以上。結(jié)電容對穩(wěn)定性、帶寬和噪聲等性能產(chǎn)生的重要影響將在下面討論。

在光電二極管的數(shù)據(jù)手冊中,寄生電阻RPD也稱作“分流”電阻或“暗”電阻。該電阻與光電二極管零偏或正偏有關(guān)。在室溫下,該電阻的典型值可超過100MW 。對于大多數(shù)應(yīng)用,該電阻的影響可被忽略。

分流電阻RPD是主要的噪聲源,這種噪聲在圖2中示為ePD。RPD產(chǎn)生的噪聲稱作散粒噪聲(熱噪聲),是由于載流子熱運動產(chǎn)生的。

二極管的第二個寄生電阻RS稱為串聯(lián)電阻,其典型值從10W 到1000W 。由于此電阻值很小,它僅對電路的頻率響應(yīng)有影響。光電二極管的漏電流IL是引發(fā)誤差的第四個因素。如果放大器的失調(diào)電壓為零,這種誤差很小。

與光致電壓方式相反,光致電導(dǎo)方式中的光電二極管具有一個反向偏置電壓加至光傳感元件的兩端。當(dāng)此電壓加至光檢測器上時,耗盡層的寬度會增加,從而大幅度地減小寄生電容CPD的值。寄生電容值的減小有利于高速工作,然而,線性度和失調(diào)誤差尚未最優(yōu)化。這個問題的折衷設(shè)計將增加二極管的漏電流IL和線性誤差。

下面將集中討論光致電壓方式下的光電二極管的應(yīng)用領(lǐng)域。

2.2 運放的SPICE模型

運算放大器具有范圍較寬的技術(shù)指標(biāo)及性能參數(shù),它對光檢測電路的穩(wěn)定性和噪聲性能影響很少。其主要參數(shù)示于圖3的模型中,它包括一個噪聲源電壓、每個輸入端的寄生共模電容、輸入端之間的寄生電容及與頻率有關(guān)的開環(huán)增益。

輸入差分電容CDIFF和輸入共模電容CCM是直接影響電路穩(wěn)定性和噪聲性能的寄生電容。這些寄生電容在數(shù)據(jù)手冊中通常規(guī)定為典型值,基本不隨時間和溫度變化。

另一個涉及到輸入性能的是噪聲電壓,該參數(shù)可模擬為運放同相輸入端的噪聲源。此噪聲源為放大器產(chǎn)生的所有噪聲的等效值。利用此噪聲源可建立放大器的全部頻譜模型,包括1/f噪聲或閃爍噪聲以及寬帶噪聲。討論中假設(shè)采用CMOS輸入放大器,則輸入電流噪聲的影響可忽略不計。

圖3 非理想的運放模型

當(dāng)運行SPICE噪聲模擬程序時,必須使用一個獨立的交流電壓源或電流源。為了模擬放大器的輸入噪聲RTI,一個獨立的電壓源VIN應(yīng)加在放大器的同相輸入端。另外,電路中的反饋電阻保持較低值(100W ),以便在評估中不影響系統(tǒng)噪聲。

圖3模型中的最后一個技術(shù)指標(biāo)為在頻率范圍內(nèi)的開環(huán)增益AOL(jw ),典型情況下,在傳輸函數(shù)中該響應(yīng)特性至少有兩個極點,該特性用于確定電路的穩(wěn)定性。

在這個應(yīng)用電路中,對運放有影響而未模擬的另一個重要性能參數(shù)是輸入共模范圍和輸出擺幅范圍。一般而言,輸入共模范圍必須擴(kuò)展到超過負(fù)電源幅值,而輸出擺幅必須盡可能地擺動到負(fù)電源幅值。大多數(shù)單電源CMOS放大器具有負(fù)電源電壓以下0.3V的共模范圍。由于同相輸入端接地,此類性能非常適合于本應(yīng)用領(lǐng)域。當(dāng)放大器對地的負(fù)載電阻為小于RF /10時,則單電源放大器的輸出擺幅可最優(yōu)化。如果采用這種方法,最壞情況下放大器負(fù)載電阻的噪聲也僅為總噪聲的0.5%。

SPICE宏模型可以模擬也可以不模擬這些參數(shù)。一個放大器宏模型會具有適當(dāng)?shù)拈_環(huán)增益頻率響應(yīng)、輸入共模范圍和不那么理想的輸出擺幅范圍。表1中列出了本文使用的三個放大器宏模型的特性。

光電二極管和放大器的寄生元件對電路的影響可容易地用SPICE模擬加以說明。例如,在理想情況下,可以通過使用ISC的方波函數(shù)和觀察輸出響應(yīng)來進(jìn)行模擬。

2.3 反饋元件模型

本應(yīng)用中應(yīng)該考慮的第三個即最后一個變量是放大器的反饋系統(tǒng)。圖4示出一個反饋網(wǎng)絡(luò)模型。

在圖4中,分離的反饋電阻RF也有一個噪聲成分eRF和一個寄生電容CRF 。

寄生電容CRF為電阻RF及與電路板/接線板相關(guān)的電容。此電容的典型值為0.5pF到1.0pF。

CF是反饋網(wǎng)絡(luò)模型中包含的第2個分離元件,用于穩(wěn)定電路。

圖4 圖1所示系統(tǒng)反饋電路的
寄生元件模型

表1 本文提到的運放宏模型特性

典型參數(shù)

理想值

MCP601

運放#2

輸入差分電容

0pF

3pF

3pF

輸入共模電容

0pF

6pF

6pF

溫度范圍內(nèi)的輸入偏流

0pA

50pA

50pA

輸入電壓噪聲

[組圖]精密的單電源光檢測電路設(shè)計方案

[組圖]精密的單電源光檢測電路設(shè)計方案

[組圖]精密的單電源光檢測電路設(shè)計方案

靜態(tài)電流

250m A

250m A

25m A

增益vs.頻率

無極點

在傳輸函數(shù)中有2個極點

在傳輸函數(shù)中有2個極點

單位增益相交時的相位容限

N/A

60°

60°

增益帶寬積(GBW)

未確定

2.8MHz

100kHz

將三個子模型(光電二極管、運放和反饋網(wǎng)絡(luò))組合起來可組成光檢測電路的系統(tǒng)模型。如圖5所示。

3 系統(tǒng)模型的相互影響和系統(tǒng)穩(wěn)定性分析

當(dāng)光電二極管配置為光致電壓工作方式時,圖5所示的系統(tǒng)模型可用來定性分析系統(tǒng)的穩(wěn)定性。

這個系統(tǒng)模型的SPICE能模擬光電二極管檢測電路的頻率及噪聲響應(yīng)。尤其是在進(jìn)入硬件實驗以前,通過模擬手段可以容易地驗證并設(shè)計出良好的系統(tǒng)穩(wěn)定性。該過程是評估系統(tǒng)的傳輸函數(shù)、確定影響系統(tǒng)穩(wěn)定性的關(guān)鍵變量并作相應(yīng)調(diào)整的過程。

該系統(tǒng)的傳輸函數(shù)為

(2)

圖5 標(biāo)準(zhǔn)光檢測電路的系統(tǒng)模型

式(2)中,AOL(jw )是放大器在頻率范圍內(nèi)的開環(huán)增益。b 是系統(tǒng)反饋系數(shù),等于1/(1+ZF/ZIN)。1/b 也稱作系統(tǒng)的噪聲增益。

ZIN是輸入阻抗,等于RPD//1/[jw (CPD+CCM+ CDIFF)];ZF是反饋阻抗,等于RF //1/[jw (CRF+CF)]。

通過補(bǔ)償AOL(jw )′ b 的相位可確定系統(tǒng)的穩(wěn)定性,這可憑經(jīng)驗用AOL(jw )和1/b 的Bode圖來實現(xiàn)。圖6中的各圖說明了這個概念。

開環(huán)增益頻率響應(yīng)和反饋系數(shù)的倒數(shù)(1/b )之間的閉合斜率必須小于或等于-20dB/10倍頻程。圖6中(a)、(c)表示穩(wěn)定系統(tǒng),(b)、(d)表示不穩(wěn)定系統(tǒng)。在(a)中,放大器的開環(huán)增益(AOL(jw ))以零dB隨頻率變化并很快變化到斜率為 -20dB/10倍頻程。盡管未在圖中顯示,但這個變化是由開環(huán)增益響應(yīng)的一個極點導(dǎo)致的,并伴隨著相位的變化,在極點以前開始以10倍頻程變化。即在極點的10倍頻程處,相移約為0° 。在極點發(fā)生的頻率處,相移為-45° 。當(dāng)斜率隨著頻率變化,到第二個極點時開環(huán)增益響應(yīng)變化至-40dB/10倍頻程。并再次伴隨著相位的變化。第3個以零點響應(yīng)出現(xiàn),并且開環(huán)增益響應(yīng)返回至-20dB/10倍頻程的斜率。

圖6 確定系統(tǒng)穩(wěn)定性的Bode圖

在同一個圖中,1/b 曲線以零dB開始隨頻率變化。1/b 隨著頻率的增加保持平滑,直到曲線末尾有一個極點產(chǎn)生,曲線便開始衰減20dB/10倍頻程。

圖(a)中令人感興趣的一點就是AOL(jw )曲線和1/b 曲線的交點。兩條曲線交點的斜率示出了系統(tǒng)的相位容限,也預(yù)示著系統(tǒng)的穩(wěn)定性。在圖中,交點斜率為-20dB/10倍頻程。在這種情況下,放大器將提供-90° 的相移,而反饋系數(shù)則提供零度相移。相移和系統(tǒng)的穩(wěn)定性均由兩條曲線的交點決定。1/b 相移和AOL(jw )相移相加,系統(tǒng)的相移為-90° ,容限為90° 。從理論上說,如果相位容限大于零度,系統(tǒng)是穩(wěn)定的。但實際應(yīng)用中相位容限至少應(yīng)有45° 才能使系統(tǒng)穩(wěn)定。

在圖6的(c)中,AOL(jw )曲線和1/b 曲線的交點表示一個在一定程度上穩(wěn)定的系統(tǒng)。此點 AOL(jw )曲線正以-20dB/10倍頻程的斜率變化,而1/b 曲線正從20dB/10倍頻程的斜率轉(zhuǎn)換到0dB/10倍頻程的斜率。AOL(jw )曲線的相移為-90° 。1/b 曲線的相移則為-45° 。將這兩個相移相加后,總的相移為-135° ,即相位容限為45° 。雖然該系統(tǒng)看上去較穩(wěn)定,即相位容限大于0° ,但是電路不可能像計算或模擬那樣理想化,因為電路板存在著寄生電容和電感。結(jié)果,具有這樣大小的相位容限,這個系統(tǒng)只能是“一定程度上的穩(wěn)定”。

圖6中(b)、(d)均為不穩(wěn)定系統(tǒng)。在(b)圖中,AOL(jw )以-20dB/10倍頻程的斜率變化。1/b 則以+20dB/10倍頻程的斜率變化。這兩條曲線的閉合斜率為40dB/10倍頻程,表示相移為-180° ,相位容限為0° 。

在(d)圖中,AOL(jw )以-40dB/10倍頻程的斜率變化。而1/b 以0dB/10倍頻程的斜率變化。兩條曲線的閉合斜率為-40dB/10倍頻程,表示相移為-180° 。

通過模擬可表明使用非理想的光電二極管和運放模型會造成相當(dāng)數(shù)量的振鈴或不穩(wěn)定因素。在頻率域內(nèi)重新進(jìn)行這種模擬會很快重現(xiàn)這種不穩(wěn)定因素。

系統(tǒng)的不穩(wěn)定性可用兩種方法校正:(1)增加一個反饋電容CF;(2)改進(jìn)放大器,使其具有差分AOL頻率響應(yīng)或差分輸入電容。

改變反饋電容。系統(tǒng)中影響噪聲增益1/b 頻率響應(yīng)的有光電二極管的寄生電容、運放的輸入電容,其阻抗以ZIN表示,放大器反饋環(huán)路的寄生元件,其阻抗以ZF表示。

ZIN = RPD //1/[ jw (CPD+CCM+CDIFF)]

ZF = RF //1/ [jw (CRF+CF)] (3)

1/b = 1+ZF/ZIN

噪聲增益1/b 曲線的極點、零點如圖7所示。開環(huán)增益頻率響應(yīng)和反饋系數(shù)的倒數(shù)1/b 間的閉合斜率必須小于或等于20dB/10倍頻程。

在圖7中,極零點頻率如下:

fP1=1/(2p (RPD//RF)(CPD+CCM+CDIFF+CF+ CRF))

fP2 =1/(2p RS CPD

fZ=1/(2p RFCF+CRF)) (4)

圖7 噪聲增益1/b 曲線的極零點圖

從式(4)中容易地看出,加大CF將降低fP1,并降低高頻增益[1+(CPD+CCM+CDIFF)/(CF+CRF)]。

1/b 網(wǎng)絡(luò)的極點設(shè)計成1/b 與放大器的開環(huán)增益曲線相交的那一點。此時頻率就是這兩條曲線的幾何平均值。CF可計算如下

(5)

式(5)中fU是放大器的增益帶寬積。此時,系統(tǒng)具有45° 的總相位容限,階躍響應(yīng)將呈現(xiàn)25%的過沖。對于使用MCP601放大器的電路,CF的值將為

這種最佳的計算結(jié)果是建立在假設(shè)放大器參數(shù)如帶寬或輸入電容以及反饋電阻值沒有改變,二極管的寄生電容也無改變基礎(chǔ)上的。

較保守的計算方法CF的取值為

(6)

此時系統(tǒng)的相位容限將為65° ,而階躍函數(shù)的過沖是5%。用式(6),CF的值將為

這種保守的方法會輕微增加系統(tǒng)噪聲。上述兩種結(jié)果均可用模擬程序#7~#10分別對表1中的MCP601和OPAMP#2進(jìn)行模擬。

4 噪聲分析及其減小

系統(tǒng)的噪聲性能是通過計算或模擬而推導(dǎo)出來的,它涉及到頻率響應(yīng)中五個區(qū)域的噪聲和反饋電阻噪聲。這五個區(qū)域如圖8所示。圖8中將整個響應(yīng)分成五個區(qū)域便可容易地計算出噪聲電壓。每個區(qū)域內(nèi)的總噪聲等于系統(tǒng)增益(1/b )乘以放大器噪聲的均方根值。RF的噪聲不乘系統(tǒng)增益。

該系統(tǒng)的噪聲電壓完整計算如下

(7)

式中e2N是指定頻率范圍內(nèi)的平方累積噪聲,(N=1,2,……5)。

盡管這些計算看來較冗長,但還是相當(dāng)有指導(dǎo)意義的。計算結(jié)果將得出總的系統(tǒng)噪聲并指出有問題的區(qū)域。

系統(tǒng)噪聲的累積均方根值也可用SPICE模擬。其X軸為頻率(Hz),Y 軸是從直流到指定頻率的累積噪聲電壓(V)。

一個SPICE噪聲模擬需要一個獨立的交流電壓源或電流源。此時電路的輸出噪聲(RTO)可被模擬。在這個模擬中,X軸為頻率(Hz),Y軸為噪聲的累積均方根值VRMS。在運行模擬程序之前,應(yīng)確保已經(jīng)鍵入了用戶想采用的反饋電容值。

圖8 系統(tǒng)噪聲

采用MCP601放大器模擬系統(tǒng)的累積噪聲,結(jié)果顯示噪聲主要發(fā)生在較高的頻率處。增加CF的值或減少RF的值可容易地降低整個系統(tǒng)的噪聲。

另一個降低噪聲的方法是減小放大器的帶寬。這可從模擬“運放#2”中觀察到。在運行模擬程序之前,要保證已鍵入了用戶想采用的反饋電容值。

采用“運放#2”模擬系統(tǒng)的累積噪聲顯示了所希望的結(jié)果,但是,光電二極管輸入信號的帶寬卻由于放大器的帶寬限制而大大減小。在某些應(yīng)用領(lǐng)域,這可能是不可折衷的。為了降低噪聲,這個電路輸出端可減小的其它參數(shù)是光電二極管的寄生電容CPD和運放的輸入電容CCMCDIFF。

在光電二極管前置放大器電路中,允許的最大噪聲是多少?作為一種參考,工作在5V輸入范圍的12位系統(tǒng)具有相當(dāng)于1.22mV的LSB。而同樣輸入電壓范圍的16位系統(tǒng)的LSB則為76.29m V。

5 結(jié)論

本文特別關(guān)注了與標(biāo)準(zhǔn)光檢測電路有關(guān)的穩(wěn)定性和噪聲問題。電路工作原理為如何較好地解決設(shè)計問題提供了思路。而模擬則用于驗證理論,它說明如何才能設(shè)計出一個低噪聲又充分穩(wěn)定的電路方案。設(shè)計中的可變參數(shù)是光電二極管、運算放大器和反饋網(wǎng)絡(luò)。選擇光電二極管主要是因為其良好的光響應(yīng)特性。但是,它的寄生電容會對噪聲增益和電路的穩(wěn)定性產(chǎn)生影響。選擇運放是由于其小的輸入偏置電流和帶寬。此外,放大器產(chǎn)生的噪聲也是一個重要的指標(biāo)。最后,反饋網(wǎng)絡(luò)也影響系統(tǒng)的信號帶寬和噪聲幅度。

一旦理論和模擬相互吻合,設(shè)計過程中最后且最重要的一步就是制作實驗?zāi)M板。

需要說明的是:本文提供了用SPICE軟件模擬實例電路12種相關(guān)的性能,它們分別可模擬光電二極管的傳輸函數(shù),二極管上升時間;運放的噪聲、運放的方波響應(yīng);光檢測電路系統(tǒng)的頻率響應(yīng)和階躍響應(yīng);系統(tǒng)的積累噪聲等(略)。讀者可通過網(wǎng)址http: //onlinetools.chipcenter.com/netsim/ photo-diode/pd_article.html上相應(yīng)的模擬程序進(jìn)行模擬。

參 考 文 獻(xiàn)

1 Baker, Bonnie C.. Keeping the Signal Clean in Photosensing Instrumentation. SENSORS, June 1997: 12

2 Baker, Bonnie C.. The Eyes of the Electronics World. http://www.EDTN.com (Internet Magazine), Analog Avenue, Tech Notes, January 21, 1998

3 Baker, Bonnie C.. Comparison of Noise Perfor-mance between a FET Transimpedance Amplifier and a Switched Integrator. Burr-Brown Application note, AB-057, January 199

4 eippel, Robert G.. Optoelectronics, Reston Publishing Company. Inc., 1981

電路相關(guān)文章:電路分析基礎(chǔ)




關(guān)鍵詞: 精密 單電源 光檢測電路

評論


相關(guān)推薦

技術(shù)專區(qū)

關(guān)閉