逆變電源設(shè)計(jì)進(jìn)一步輸入24VDC輸出220VDC整流
圖3:開關(guān)變壓器電路理想工作波形圖
3.2各點(diǎn)波形分析
當(dāng)某一PWN信號(hào)的下降沿來(lái)臨時(shí),其控制的開關(guān)元件關(guān)斷,由于原邊能量的儲(chǔ)存和漏電感的原因,漏極產(chǎn)生沖擊電壓,大于2UI,因?yàn)榧尤肓薘C緩沖電路,使其最終穩(wěn)定在2UI附近。
當(dāng)S1的PWN 信號(hào)下降沿來(lái)臨,S1關(guān)斷,漏極產(chǎn)生較高的沖擊電壓,并使得與S2并聯(lián)的反饋能量二極管FWD2導(dǎo)通,形成能量回饋回路,此時(shí)S2漏極產(chǎn)生較高的沖擊電流,見圖4。
圖4:S2漏極產(chǎn)生較高的沖擊電流圖3 實(shí)驗(yàn)與分析
3.1 原理設(shè)計(jì)
圖5為簡(jiǎn)化后的主電路。輸入24V 直流電壓,經(jīng)過(guò)大電容濾波后,接到推挽變壓器原邊的中間抽頭。變壓器原邊另外兩個(gè)抽頭分別接兩個(gè)全控型開關(guān)器件IGBT,并在此之間加入RC吸收電路,構(gòu)成推挽逆變電路。推挽變壓器輸出端經(jīng)全橋整流,大電容濾波得到220V直流電壓。并通過(guò)分壓支路得到反饋電壓信號(hào)UOUT。
圖5:推挽DC-DC變換器主電路圖
以CA3524芯片為核心,構(gòu)成控制電路。通過(guò)調(diào)節(jié)6、7管腳間的電阻和電容值來(lái)調(diào)節(jié)全控型開關(guān)器件的開關(guān)頻率。12、13 管腳輸出PWM脈沖信號(hào),并通過(guò)驅(qū)動(dòng)電路,分別交替控制兩個(gè)全控型開關(guān)器件。電壓反饋信號(hào)輸入芯片的1管腳,通過(guò)調(diào)節(jié)電位器P2給2管腳輸入電壓反饋信號(hào)的參考電壓,并與9管腳COM端連同CA3524內(nèi)部運(yùn)放一起構(gòu)成PI調(diào)節(jié)器,調(diào)節(jié)PWM脈沖占空比,以達(dá)到穩(wěn)定輸出電壓220V的目的。
3.2 結(jié)果與分析
實(shí)驗(yàn)結(jié)果表面,輸出電壓穩(wěn)定在220V,紋波電壓較小。最大輸出功率能達(dá)到近600W,系統(tǒng)效率基本穩(wěn)定在80%,達(dá)到預(yù)期效果。如下表1所示。
其中,由于IGBT效率損耗較大導(dǎo)致系統(tǒng)效率偏低,考慮如果采用損耗較小的MOSFET,系統(tǒng)效率會(huì)至少上升10%~15%。
注意事項(xiàng):
(1) 變壓器初級(jí)繞組在正、反兩個(gè)方向激勵(lì)時(shí),由于相應(yīng)的伏秒積不相等,會(huì)使磁芯的工作磁化曲線偏離原點(diǎn),這一偏磁現(xiàn)象與開關(guān)管的選擇有關(guān),原因是開關(guān)管反向恢復(fù)時(shí)間的不同> 可導(dǎo)致伏秒積的不同。
(2)實(shí)驗(yàn)中,隨著輸入電壓的微幅增高,系統(tǒng)損耗隨之增大,主要原因是變壓器磁芯產(chǎn)生較大的渦流損耗,系統(tǒng)效率有所下降。減小渦流損耗的措施主要有:減小感應(yīng)電勢(shì),如采用鐵粉芯材料;增加鐵心的電阻率,如采用鐵氧體材料;加長(zhǎng)渦流所經(jīng)的路徑,如采用硅鋼片或非晶帶。
4 結(jié)論
本方案利用24VDC輸入-220VDC 輸出、額定輸出功率600W的DC-DC變換器,并采用AP法設(shè)計(jì)了一種高頻推挽變壓器。實(shí)驗(yàn)結(jié)果表明,本方案使輸出電壓穩(wěn)定在220V并具有一定的輸出硬度,效率達(dá)到80%,特別適用于低壓大電流輸入的中小功率場(chǎng)合。
逆變器相關(guān)文章:逆變器原理
dc相關(guān)文章:dc是什么
逆變器相關(guān)文章:逆變器工作原理
漏電開關(guān)相關(guān)文章:漏電開關(guān)原理
評(píng)論