新聞中心

EEPW首頁(yè) > 電源與新能源 > 設(shè)計(jì)應(yīng)用 > 開(kāi)關(guān)電源的影響的主要因素

開(kāi)關(guān)電源的影響的主要因素

作者: 時(shí)間:2012-04-06 來(lái)源:網(wǎng)絡(luò) 收藏
VREVERSE是二極管的反向偏置電壓,IRRPEAK是反向電流,tRR2是從反向電流峰值到恢復(fù)電流為正的時(shí)間。對(duì)于降壓電路,當(dāng)MOSFET導(dǎo)通的時(shí)候,Vin為二極管的反向偏置電壓。

本文引用地址:http://m.butianyuan.cn/article/230811.htm


基于上述討論,減小開(kāi)關(guān)器件損耗的直接途徑是:選擇低導(dǎo)通電阻、可快速切換的MOSFET;選擇低導(dǎo)通壓降、快速恢復(fù)的二極管。通常,增加芯片尺寸和漏源極擊穿電壓,有助于降低導(dǎo)通電阻。因此,選擇MOSFET時(shí)需要在尺寸和效率之間進(jìn)行權(quán)衡。另外,由于MOSFET的正溫度特性,當(dāng)芯片溫度升高時(shí),導(dǎo)通電阻會(huì)相應(yīng)增大。必須采用適當(dāng)?shù)臒峁芾矸桨副3州^低的結(jié)溫,使導(dǎo)通電阻不會(huì)過(guò)大。導(dǎo)通電阻和柵源偏置電壓成反比,因此,推薦使用足夠大的柵極電壓,使MOSFET充分導(dǎo)通,該方案也會(huì)增大柵極驅(qū)動(dòng)損耗。而且,開(kāi)關(guān)控制器件本身通常無(wú)法產(chǎn)生較高的柵極驅(qū)動(dòng)電壓,除非芯片提供有自舉電路,或采用外部柵極驅(qū)動(dòng)。MOSFET的開(kāi)關(guān)損耗取決于寄生電容,較大的寄生電容需要較長(zhǎng)的充電時(shí)間,使開(kāi)關(guān)轉(zhuǎn)換變緩,損耗更多的能量。米勒電容通常反比于MOSFET的傳導(dǎo)電容或柵-漏電容,在開(kāi)關(guān)過(guò)程中對(duì)轉(zhuǎn)換時(shí)間起決定作用。米勒電容的充電電荷定義為QGD,為了快速切換MOSFET,要求盡可能低的米勒電容。一般來(lái)說(shuō),MOSFET的電容和芯片尺寸成反比,因此必須折衷考慮開(kāi)關(guān)損耗和傳導(dǎo)損耗,同時(shí)也要謹(jǐn)慎選擇電路的開(kāi)關(guān)頻率。

對(duì)于二極管,必須降低導(dǎo)通壓降,以降低由此產(chǎn)生的損耗。對(duì)于小尺寸、額定電壓較低的二極管,導(dǎo)通壓降一般在0.7V~1.5V之間。二極管的尺寸、工藝和耐壓等級(jí)都會(huì)影響導(dǎo)通壓降和反向恢復(fù)時(shí)間。額定電壓較高的大尺寸二極管通常具有較高VF的和tRR,這會(huì)造成比較大的損耗。高速應(yīng)用中的開(kāi)關(guān)二極管一般以速度劃分,速度越高,反向恢復(fù)時(shí)間越短??旎謴?fù)二極管的tRR為幾百納秒,而超高速快恢復(fù)二極管的tRR為幾十納秒。PN結(jié)二極管的導(dǎo)通壓降較大,適合大電流、高壓工作場(chǎng)合,通常用于大功率系統(tǒng)。低功率或便攜產(chǎn)品中,即使經(jīng)過(guò)優(yōu)化選擇的導(dǎo)通壓降和tRR二極管仍會(huì)帶來(lái)較大的損耗。

低功耗應(yīng)用中,替代快恢復(fù)二極管的一種選擇是肖特基二極管,這種二極管的恢復(fù)時(shí)間幾乎可以忽略,反向恢復(fù)電壓也只有普通二極管的一半,但它的工作電壓遠(yuǎn)遠(yuǎn)低于快恢復(fù)二極管??紤]到這些特點(diǎn),肖特基二極管被廣泛用于低功耗設(shè)計(jì),在低占空比時(shí)可以降低開(kāi)關(guān)二極管的損耗。

公式

在一些低壓應(yīng)用中,即便是具有較低壓降的肖特基二極管,所產(chǎn)生的傳導(dǎo)損耗也無(wú)法接受。比如,在輸出為1.5V的電路中,肖特基二極管的0.5V導(dǎo)通壓降會(huì)產(chǎn)生33%的能量損耗。為了解決這一問(wèn)題,可以選擇低導(dǎo)通電阻的MOSFET實(shí)現(xiàn)同步控制架構(gòu)。圖1電路用MOSFET取代二極管,它與另外一個(gè)MOSFET同步工作,所以在交替切換的過(guò)程中,保證只有一個(gè)導(dǎo)通。由此,二極管的高導(dǎo)通壓降問(wèn)題被轉(zhuǎn)換成MOSFET的導(dǎo)通電阻和壓降,取代了二極管的傳導(dǎo)損耗。當(dāng)然,同步整流也會(huì)帶來(lái)其它影響,例如:增加了系統(tǒng)設(shè)計(jì)的復(fù)雜度、成本,特別是在大電流應(yīng)用中,這種架構(gòu)不見(jiàn)得比異步方案更優(yōu)越,因?yàn)镸OSFET傳導(dǎo)損耗的提升與電流的平方成正比。另外,我們還要考慮同步整流中柵極驅(qū)動(dòng)引入的能量損耗。

以上討論了MOSFET和二極管對(duì)效率的影響。合理選擇開(kāi)關(guān)器件有助于改善效率,但這并非唯一的優(yōu)化設(shè)計(jì)的渠道。從下面的討論可以看到,電感、電容引入的損耗也是設(shè)計(jì)高效所面臨的問(wèn)題。

電感損耗

電感功耗包括線(xiàn)圈損耗和磁芯損耗,線(xiàn)圈損耗歸結(jié)于線(xiàn)圈的直流電阻(DCR),磁芯損耗歸結(jié)于電感的磁特性。對(duì)一個(gè)固定的電感值,電感尺寸較小時(shí),為了保持相同匝數(shù)必須減小線(xiàn)圈的橫截面積,因此導(dǎo)致DCR增大;對(duì)于給定的電感尺寸,小電感值允許減小DCR。已知DCR和平均電感電流Ilavq,電感的電阻損耗可以用下式估算。

PLdcr = ILavg 2×DCR

磁芯損耗并不像傳導(dǎo)損耗那樣容易估算。它由磁滯、渦流損耗組成,直接影響鐵芯的交變磁通。開(kāi)關(guān)電源中,盡管平均直流電流流過(guò)電感,由于通過(guò)電感的開(kāi)關(guān)電壓的變化產(chǎn)生的紋波電流導(dǎo)致磁芯周期性的磁通變化。磁滯損耗源于每個(gè)交流周期中磁芯偶極子的重新排列所消耗的功率,正比于頻率和磁通密度。

電容損耗

與理想的電容模型相反,電容元件的實(shí)際物理特性導(dǎo)致了幾種損耗。電容在電源電路中主要起穩(wěn)壓、濾除輸入/輸出噪聲的作用(圖4),電容的這些損耗降低了開(kāi)關(guān)電源的效率。這些損耗可以通過(guò)三種現(xiàn)象描述:等效串聯(lián)電阻損耗、漏電流損耗和電介質(zhì)損耗。電容的阻性損耗顯而易見(jiàn)。既然電流在每個(gè)開(kāi)關(guān)周期流入、流出電容,電容固有的電阻(Rc)將造成一定功耗。漏電流損耗(RL)是由于電容絕緣材料的電阻導(dǎo)致較小電流流過(guò)電容而產(chǎn)生的功率損耗。電介質(zhì)損耗(RD)比較復(fù)雜,由于電容兩端施加了交流電壓,電容電場(chǎng)發(fā)生變化,從而使電介質(zhì)分子極化造成功率損耗。

開(kāi)關(guān)電源的影響的主要因素

圖4電容損耗模型一般簡(jiǎn)化為一個(gè)等效串聯(lián)電阻

開(kāi)關(guān)電源IC的折衷選擇

合理選擇開(kāi)關(guān)電源IC有助于改善系統(tǒng)效率,特別需要考慮IC封裝、設(shè)計(jì)和控制架構(gòu)。功率開(kāi)關(guān)集成到IC內(nèi)部時(shí)可以省去繁瑣的MOSFET或二極管選擇,而且使電路更加緊湊,由于降低了線(xiàn)路損耗和寄生效應(yīng),可以在一定程度上提高效率。IC規(guī)格中值得注意的一項(xiàng)指標(biāo)是靜態(tài)電流(IQ),它是維持電路工作所需的電流。重載情況下(大于一倍或兩倍的靜態(tài)電流),IQ對(duì)效率的影響并不明顯,因?yàn)樨?fù)載電流遠(yuǎn)大于IQ,而隨著負(fù)載電流的降低,效率有下降的趨勢(shì),因?yàn)镮Q對(duì)應(yīng)的功率占總功率的比例提高。對(duì)于便攜產(chǎn)品或電池供電產(chǎn)品,無(wú)疑選擇具有極低IQ的電源IC比較理想,有些IC則通過(guò)不同的工作模式(例如:休眠模式或低功耗關(guān)斷模式)來(lái)降低IQ。

開(kāi)關(guān)電源的控制架構(gòu)是影響開(kāi)關(guān)電源效率的關(guān)鍵因素之一。圖1所示同步整流架構(gòu)中,由于采用低導(dǎo)通電阻的MOSFET取代了功耗較大的開(kāi)關(guān)二極管,可有效改善效率指標(biāo)。另一種常見(jiàn)的DC-DC控制結(jié)構(gòu)是在輕載時(shí)進(jìn)入跳脈沖工作模式,與單純的PWM開(kāi)關(guān)操作(在重載和輕載時(shí)均采用固定的開(kāi)關(guān)頻率)不同,跳脈沖模式下轉(zhuǎn)換器工作在跳躍的開(kāi)關(guān)周期,可以節(jié)省不必要的開(kāi)關(guān)操作。跳脈沖模式下,在一段較長(zhǎng)時(shí)間內(nèi)電感放電,將能量從電感傳遞給負(fù)載,以維持輸出電壓。但是,跳脈沖模式會(huì)產(chǎn)生額外的輸出噪聲,這些噪聲由于分布在不同頻率,很難濾除。先進(jìn)的開(kāi)關(guān)電源IC會(huì)合理利用兩者的優(yōu)勢(shì):重載時(shí)采用恒定PWM頻率;輕載時(shí)采用跳脈沖模式,圖1所示IC即提供了這樣的工作模式。

優(yōu)化開(kāi)關(guān)電源效率

開(kāi)關(guān)電源因其高效率指標(biāo)得到廣泛應(yīng)用,但其效率仍然受開(kāi)關(guān)電路的一些固有損耗的制約。設(shè)計(jì)開(kāi)關(guān)電源時(shí),需要仔細(xì)研究造成開(kāi)關(guān)電源損耗的來(lái)源,合理選擇器件,從而充分利用開(kāi)關(guān)電源的高效優(yōu)勢(shì)。



上一頁(yè) 1 2 下一頁(yè)

評(píng)論


相關(guān)推薦

技術(shù)專(zhuān)區(qū)

關(guān)閉