新聞中心

EEPW首頁 > 電源與新能源 > 設計應用 > 基于DSP和CPLD的載波移相多電平PWM實現(xiàn)的研究

基于DSP和CPLD的載波移相多電平PWM實現(xiàn)的研究

作者: 時間:2011-11-27 來源:網(wǎng)絡 收藏

  1 引言

  隨著電力電子技術和電力半導體技術的迅速發(fā)展,中壓大功率傳動設備在石油化工、礦山開采、軋鋼和冶金、運輸?shù)阮I域得到了廣泛的應用,不僅提高了資源的利用率,同時還降低了生產(chǎn)的成本,其中變頻器扮演著重要的角色。雖然其電路的拓撲結構和控制技術已經(jīng)比較成熟,但技術的研究仍備受大家的關注。技術避免了器件的直接串聯(lián),具有輸出電壓高,諧波含量低,電壓變化率小,開關頻率低等優(yōu)點。技術實現(xiàn)的關鍵在于如何實現(xiàn)大量的S控制信號。本文針對這個問題進行研究和探討,利用DSP和CPLD兩大控制器來實現(xiàn)多電平S,并最終給出實測波形圖。

  2 總體設計方案

  2.1單元串聯(lián)多電平變頻器拓撲結構介紹

  單元串聯(lián)多電平變頻器的拓撲結構簡單,易于模塊化,可以根據(jù)系統(tǒng)對輸出電壓、電平數(shù)的要求確定功率單元的級數(shù)。如圖1所示,七電平H橋串聯(lián)逆變器拓撲結構圖,其單相電壓是由三個功率單元組成,每個功率單元均為H橋逆變電路結構,輸出端依次串聯(lián)在一起,并利用S信號控制功率單元中開關器件的通與斷(即控制功率單元的輸出),最終實現(xiàn)多電平電壓的疊加輸出。

  基于DSP和CPLD的載波移相多電平PWM實現(xiàn)的研究

  2.2控制理論

  一般來說,N電平的逆變器調制,需要N-1個三角載波。移相載波調制法中,所有三角波均具有相同的頻率和幅值,但是任意兩個相鄰載波的相位要有一定的相移,其值為

 ?。?) 基于DSP和CPLD的載波移相多電平PWM實現(xiàn)的研究

  調制信號通常為幅值和頻率都可調節(jié)的三相正弦信號。通過調制波和載波的比較,可以產(chǎn)生所需要的開關器件的驅動信號[1]。

  但在數(shù)字化實現(xiàn)中,法一般不是由一個調制波和一組經(jīng)過相移的載波比較生成,而是由調制波和一個載波進行比較之后,再進行一定的延時得到各個功率單元的SPWM控制信號。在本系統(tǒng)中采用此種方法來實現(xiàn)多路SPWM的控制信號。

  根據(jù)對以上概念的理解和分析,在本系統(tǒng)中,采用DSP+CPLD來完成多路SPWM控制信號的實現(xiàn)。其中由DSP控制器實現(xiàn)單相電壓中的第一級功率單元兩橋臂控制信號,并由CPLD來實現(xiàn)對這兩路控制信號的移相延時,進而實現(xiàn)單相電壓中各個功率單元的SPWM控制信號(即移相后信號)。系統(tǒng)原理框圖如下圖2所示:

  基于DSP和CPLD的載波移相多電平PWM實現(xiàn)的研究

  1 引言

  隨著電力電子技術和電力半導體技術的迅速發(fā)展,中壓大功率傳動設備在石油化工、礦山開采、軋鋼和冶金、運輸?shù)阮I域得到了廣泛的應用,不僅提高了資源的利用率,同時還降低了生產(chǎn)的成本,其中變頻器扮演著重要的角色。雖然其電路的拓撲結構和控制技術已經(jīng)比較成熟,但多電平技術的研究仍備受大家的關注。多電平技術避免了器件的直接串聯(lián),具有輸出電壓高,諧波含量低,電壓變化率小,開關頻率低等優(yōu)點。多電平技術實現(xiàn)的關鍵在于如何實現(xiàn)大量的SPWM控制信號。本文針對這個問題進行研究和探討,利用DSP和CPLD兩大控制器來實現(xiàn)多電平SPWM,并最終給出實測波形圖。

  2 總體設計方案

  2.1單元串聯(lián)多電平變頻器拓撲結構介紹

  單元串聯(lián)多電平變頻器的拓撲結構簡單,易于模塊化,可以根據(jù)系統(tǒng)對輸出電壓、電平數(shù)的要求確定功率單元的級數(shù)。如圖1所示,七電平H橋串聯(lián)逆變器拓撲結構圖,其單相電壓是由三個功率單元組成,每個功率單元均為H橋逆變電路結構,輸出端依次串聯(lián)在一起,并利用SPWM信號控制功率單元中開關器件的通與斷(即控制功率單元的輸出),最終實現(xiàn)多電平電壓的疊加輸出。

  基于DSP和CPLD的載波移相多電平PWM實現(xiàn)的研究

  2.2控制理論

  一般來說,N電平的逆變器調制,需要N-1個三角載波。移相載波調制法中,所有三角波均具有相同的頻率和幅值,但是任意兩個相鄰載波的相位要有一定的相移,其值為

 ?。?) 基于DSP和CPLD的載波移相多電平PWM實現(xiàn)的研究

  調制信號通常為幅值和頻率都可調節(jié)的三相正弦信號。通過調制波和載波的比較,可以產(chǎn)生所需要的開關器件的驅動信號[1]。

  但在數(shù)字化實現(xiàn)中,載波移相法一般不是由一個調制波和一組經(jīng)過相移的載波比較生成,而是由調制波和一個載波進行比較之后,再進行一定的延時得到各個功率單元的SPWM控制信號。在本系統(tǒng)中采用此種方法來實現(xiàn)多路SPWM的控制信號。

  根據(jù)對以上概念的理解和分析,在本系統(tǒng)中,采用DSP+CPLD來完成多路SPWM控制信號的實現(xiàn)。其中由DSP控制器實現(xiàn)單相電壓中的第一級功率單元兩橋臂控制信號,并由CPLD來實現(xiàn)對這兩路控制信號的移相延時,進而實現(xiàn)單相電壓中各個功率單元的SPWM控制信號(即移相后信號)。系統(tǒng)原理框圖如下圖2所示:

  基于DSP和CPLD的載波移相多電平PWM實現(xiàn)的研究

  3 DSP控制部分

  DSP控制部分主要任務是實現(xiàn)單相電壓中第一級功率單元的兩路控制信號。如圖3所示,這兩路控制信號分別控制左橋臂Q1和右橋臂Q3兩開關器件的通與斷,為避免同一橋臂上的兩個開關器件同時導通,使Q2和Q4控制信號分別為Q1和Q3信號的互補信號,由于器件的動作需要一定時間,因此Q1和Q2、Q3和Q4信號間需要增加一定的死區(qū)延時時間,在本系統(tǒng)中,死區(qū)延時的時間由硬件完成。

  基于DSP和CPLD的載波移相多電平PWM實現(xiàn)的研究

  功率單元左橋臂Q1的控制信號由三角載波與參考波(正弦波)比較得到,當參考波大于載波時,輸出高電平,Q1導通,Q2截止;反之,輸出低電平,Q1截止,Q2導通。Q1信號取反后得到Q2信號。左橋臂Q3的控制信號由互差180。的三角載波與參考波(正弦波)比較得到,當參考波大于載波時,輸出高電平,Q3導通,Q4截止;反之,輸出低電平,Q3截止,Q4導通。Q3信號取反后得到Q4信號。載波與參考波的比較過程參考圖4,兩橋臂控制信號的實測波形如圖5。將參考波分別向左移或向右移動120。并與三角載波相比較便可得到其它兩相電壓的第一級功率單元的控制信號。

  基于DSP和CPLD的載波移相多電平PWM實現(xiàn)的研究

  根據(jù)對以上內(nèi)容的分析,在本系統(tǒng)中采用了TI公司的DSP TMS320F2812作為該部分的控制核心。其內(nèi)核為32位,運行速度可以達到150MIPS,足夠完成一些較復雜的控制算法。同時其有6路獨立的PWM輸出、2個異步串行通訊口、16通道12位AD輸入,內(nèi)置了36K的RAM和256K的Flash存儲器,可以存放較大規(guī)模的程序。在主控制電路中,只需要在該DSP的基礎上配合一些簡單的外圍電路即可實現(xiàn)所需的6路SPWM控制信號。

  4 CPLD控制部分

  CPLD控制部分主要任務是對第一級功率單元H橋左、右橋臂控制信號進行移相(即上文所提到的延時),進而得到以后各級功率單元的左、右橋臂的控制信號。該部分設計的關鍵是信號的邊沿檢測和移相延時兩部分。如下圖6所示,首先,CPLD對SPWM進行邊沿信號檢測,當檢測到上升沿(或下降沿)到來后,再進行Td時間的延時,最后輸出置1(或0),以達到移相的目的。

  基于DSP和CPLD的載波移相多電平PWM實現(xiàn)的研究

  邊沿信號檢測可以利用邊沿觸發(fā)的觸發(fā)器去檢測上升沿或下降沿,但是這種方式對于邊沿的檢測過于敏感,系統(tǒng)中的一個尖峰干擾將會導致邊沿檢測的誤判,為解決這個問題,我們進行多次采樣,比較前后幾次采樣的結果,再來判別邊沿是否到來。這種方法對抗干擾起到了一定的作用,增強了系統(tǒng)的健壯性、穩(wěn)定性。

  移相延時部分最重要的是對延時時間的選擇,延時時間長或短都會影響到系統(tǒng)的性能,本設計中,第二級功率單元的延時時間根據(jù)公式(2)(公式內(nèi)容僅供參考)計算得到(以后各級功率單元的延時時間相應的增加Td即可):

  (2) 基于DSP和CPLD的載波移相多電平PWM實現(xiàn)的研究


上一頁 1 2 下一頁

關鍵詞: 載波移相 多電平 PWM

評論


相關推薦

技術專區(qū)

關閉