談?wù)勁月泛腿ヱ詈想娙?原理部分
看了很多關(guān)于旁路電容和去藕電容的文章,有代表性的如下:
退耦電容的選擇和應(yīng)用
十說電容
關(guān)于旁路電容和耦合電容
關(guān)于旁路電容的深度對(duì)話
對(duì)于以上的文章,我是很佩服的,我按照它們的思路把問題推演和考證了一下,參考了一些數(shù)據(jù),自己推導(dǎo)一下電容模型的阻抗曲線,試圖做的就是讓問題更明顯一些。打算把這個(gè)問題分成兩個(gè)部分,第一個(gè)就是原理上去驗(yàn)證,第二個(gè)就是從實(shí)際的例子去推演。各位看完有任何意見請(qǐng)留言。
先看看此類電容的應(yīng)用場(chǎng)合:
根據(jù)以上電路來說,由一個(gè)電源驅(qū)動(dòng)多個(gè)負(fù)載,如果沒有加任何電容,每個(gè)負(fù)載的電流波動(dòng)會(huì)直接影響某段導(dǎo)線上的電壓。
瞬間沖擊電流的產(chǎn)生原因
1.容性負(fù)載
來分析一下數(shù)字電路的電流波動(dòng),數(shù)字電路的負(fù)載并不是純阻性的,如果負(fù)載電容比較大,數(shù)字電路驅(qū)動(dòng)部分要把負(fù)載電容充電、放電,才能完成信號(hào)的跳變,在信號(hào)上升沿比較陡峭的時(shí)候,電流比較大,對(duì)于數(shù)字芯片來說,新派驅(qū)動(dòng)部分電流會(huì)從電源線上吸收很大的電流,由于線路存在著的電感,電阻(特別是芯片管腳上的電感,會(huì)產(chǎn)生反彈),這種電流相對(duì)于正常情況來說實(shí)際上就是一種噪聲,會(huì)影響前級(jí)的正常工作,下圖反應(yīng)了工作情況
2.輸出級(jí)控制正負(fù)邏輯輸出的管子短時(shí)間同時(shí)導(dǎo)通,產(chǎn)生瞬態(tài)尖峰電流
PMOS和NMOS同時(shí)導(dǎo)通的時(shí)候出現(xiàn)的電流尖峰。
電壓塌陷噪聲
我們考慮數(shù)字電路內(nèi)部結(jié)構(gòu)一般由兩個(gè)Mos管組成,為了便于分析,我們假設(shè)初始時(shí)刻傳輸線上各點(diǎn)的電壓和電流均為零?,F(xiàn)在我們分析數(shù)字器件某時(shí)刻輸出從低電平轉(zhuǎn)變?yōu)楦唠娖剑@時(shí)候器件就需要從電源管腳吸收電流(上面一個(gè)分析的是容性負(fù)載,現(xiàn)在考慮的是阻性負(fù)載)。
從低到高(L=>H)
在時(shí)間點(diǎn)T1,高邊的PMOS管導(dǎo)通,電流從PCB板上流入芯片的VCC管腳,流經(jīng)封裝電感L.vcc,通過PMOS管和負(fù)載電阻最后通過返回路徑。電流在傳輸線網(wǎng)絡(luò)上持續(xù)一個(gè)完整的返回時(shí)間,在時(shí)間點(diǎn)T2結(jié)束。之后整個(gè)傳輸線處于電荷充滿狀態(tài),不需要額外流入電流來維持。
當(dāng)電流瞬間涌過L.vcc時(shí),將在芯片內(nèi)部電源和PCB板上產(chǎn)生一個(gè)電壓被拉低的擾動(dòng)。該擾動(dòng)在電源中被稱之為同步開關(guān)噪聲(SSN)或Delta I噪聲。
從高到低(L=>H)
在時(shí)間點(diǎn)T3,我們首先關(guān)閉PMOS管(不會(huì)導(dǎo)致脈沖噪聲,PMOS管一直處于導(dǎo)通狀態(tài)且沒有電流流過的)。同時(shí)我們打開NMOS管,這時(shí)傳輸線、地平面、L.gnd以及NMOS管形成一回路,有瞬間電流流過開關(guān)NMOS管,這樣芯片內(nèi)部至PCB地節(jié)點(diǎn)前處產(chǎn)生參考電平被抬高的擾動(dòng)。該擾動(dòng)在電源系統(tǒng)中被稱之為地彈噪聲(Ground Bounce)。
實(shí)際電源系統(tǒng)中存在芯片引腳、PCB走線、電源層、底層等任何互連線都存在一定電感值,就整個(gè)電源分布系統(tǒng)來說來說,這就是所謂的電源電壓塌陷噪聲。
電荷放大器相關(guān)文章:電荷放大器原理 電容相關(guān)文章:電容原理 電子負(fù)載相關(guān)文章:電子負(fù)載原理
評(píng)論