新聞中心

EEPW首頁 > 電源與新能源 > 設計應用 > 開關電源原理與設計(連載37)交流輸出單電容半橋式變壓器開關電源(part2)

開關電源原理與設計(連載37)交流輸出單電容半橋式變壓器開關電源(part2)

作者: 時間:2011-02-28 來源:網(wǎng)絡 收藏

另外,單電容變壓器屬于正激勵輸出電源。正激式電源的變壓器伏秒容量一般都取得很大,勵磁電流相對于等效負載電流來說非常小,即:在圖1-40-b中i2遠遠大于i1。由此,我們主要是對i2電流的作用進行分析,而對i1只把它看成是對i2進行調制,并且調制幅度很小。

如果不考慮i1對i2的調制作用,則當控制開關K1接通,電源電壓Ui開始通過控制開關K1和開關變壓器初級線圈的等效負載電阻R對電容C1進行充電,電容器兩端的電壓增量為:

(1-164)和(1-165)式中,Δuc 電容器充電時電容器兩端的電壓增量,Δ uc2為電源單獨通過等效負載電阻R對電容器充電時,電容器兩端的電壓增量;Δ um2為電容充電電壓增量的最大值,即電流i2對電容充電產(chǎn)生的電壓增量最大值, U(0-)c2為電容器剛開始充電瞬間電容器兩端的電壓,即電容器開始充電時的初始電壓;電容第一次充電時,由于初始電壓U(0-)c2 = 0,所以ΔUm2 =Ui , Ui為電源電壓;R為負載回路通過變壓器次級線圈折射到變壓器初級線圈回路的等效負載電阻,R =R1/n*n ,R1為變壓器次級線圈輸出回路的負載電阻。

RC為時間常數(shù),時間常數(shù)一般都用τ來表示,即τ = RC,其中C = C1。這里為了簡化在不容易混淆的情況下我們經(jīng)常把電感L和電容C的下標省去。

當需要進一步考慮流過開關變壓器初級線圈N1繞組的勵磁電流對電容充電的影響時,可在(1-164)式右邊乘以一個略大于一的系數(shù),這是因為勵磁電流與流過等效負載的電流對電容充電時,電流方向完全一致,并且充電曲線的曲率也很相近。

當控制開關K1關斷,控制開關K2剛接通的時候,電容器C1將通過控制開關K2和開關變壓器初級線圈的b、a兩端進行放電。同樣,電容放電時也可以看成是電容對兩部分電路進行放電。電容放電的過程也可以參考圖1-40,不過圖中應該把電源Ui移去并把原來接電源的兩端引線短路,以及把控制開關K1換成K2。

前面已經(jīng)指出,在電感與電容組成的電路中,電容放電時其兩端的電壓是按余弦曲線下降的;而在電阻與電容組成的電路中,電容放電時其兩端的電壓是按指數(shù)曲線下降的。同理,由于勵磁電流相對于等效負載電流來說非常小,這里我主要考慮流過等效負載電阻R對電容器C1進行放電的作用。根據(jù)前面分析,這里我們直接給出電容放電過程的數(shù)學表達式:

(1-166)和(1-167)式中,負號表示電容放電,其電流或電壓的方向與電容充電時的電流與電壓的方向相反;-Δuc 為電容器放電時任一時刻電容器兩端的電壓增量(取負值),-Δuc2 為電源單獨通過等效負載電阻對電容器放電時,任一時刻電容兩端的電壓增量(取負值),-U(0+)c2 為電容器剛放電瞬間電容器兩端的電壓(取負值),或電容器在上一次充電時電容器兩端的電壓(取負值),即電容器開始放電時的初始電壓;R為負載回路通過變壓器次級線圈折射到變壓器初級線圈回路的等效負載電阻,R =R1/n*n ,R1為變壓器次級線圈輸出回路的負載電阻。

同理,當需要進一步考慮流過開關變壓器初級線圈N1繞組的勵磁電流對電容放電的影響時,可在(1-166)式右邊乘以一個略大于一的系數(shù)。

由此可見,要精確計算電容器每次充、放電時的電壓值是非常麻煩的,如果同時也把流過變壓器初級線圈的勵磁電流對電容充放電的影響也考慮進去,計算還要更復雜。

變壓器中,控制開關K1每接通一次,電容器C1就要被充電一次;控制開關K2每接通一次,電容器C1就要被放電一次。但由于剛開始工作的時候,電容器C1事先沒有充電,電容器兩端的電壓約等于零,所以,電容器每次充電的電荷或電壓增量總是大于電容器放電的電荷或電壓增量,因此,電容器兩端的平均電壓在開關電源剛開始工作的時候是一直在上升的;直到電容器每次充電的電壓增量與電容器放電的電壓增量完全相等時候,電容器兩端電壓的平均值才會穩(wěn)定在某個數(shù)值上。

如果控制開關K1和K2工作時占空比完全相等,則:電容器每次充電的電壓增量與電容器放電的電壓增量也完全相等,電容器兩端電壓的平均值就會正好穩(wěn)定在輸入電壓Ui的二分之一處。即:

Δuc =│-Δuc │ —— 電容充滿電時 (1-168)

U(0-) c2≈U(0+) c2 ≈ Ui/2—— 電容充滿電時 (1-169)

這里特別指出:(1-169)式中認為電容充、放電時的初始電壓值基本相等,是因為電容的容量一般取得很大,每次充放電時電容兩端的電壓變化很小,這同時也意味著電容器充滿電所需要的時間相當長。

如果電容器兩端電壓的平均值不等于輸入電壓Ui的二分之一,那么,電容每次充電的電荷或者電壓增量與電容器放電的電荷或者電壓增量也不會相等,此時,電容器兩端電壓的平均值將會跟隨充電或者放電增量較大的一方而變化。例如,當控制開關K1接通的時候,如果電容器充電的電壓增量,大于控制開關K2接通時電容器放電的電壓增量,則電容器兩端電壓的平均值將會上升;反之,電容器兩端電壓的平均值將會下降。




關鍵詞: 開關電源 半橋式

評論


相關推薦

技術專區(qū)

關閉