利用超聲散射測量材料內(nèi)部微裂紋分形參數(shù)的新方法
考慮到方程(10)中積分項不能直接計算,因為f(x,H) 沒有導數(shù),所以我們采用數(shù)值計算的方法來近似計算這一積分,在這種情況下,方程(10)可化為:
(11)
如果步長 Δx 選的足夠小,計算結(jié)果可以保證精度的要求。
4 模型數(shù)值仿真與分析
作為模型的實際應用,我們分別計算了模型在不同分形參數(shù)、不同的測量距離和不同材料上的超聲散射回波。
試驗中,采用了三種不同的材料,分別是鋁、鋼和和玻璃,超聲波在三種材料中的聲速分別為6300m/s,5900m/s 和5570m/s。超聲波的中心頻率為5MHz,超聲傳感器的晶片直徑為10mm。
圖-2是不同分形參數(shù)的微裂紋在時刻 時的超聲散射回波,圖中分別給出了三種材料對應的仿真結(jié)果。從圖中可以看出,不同分形參數(shù)的裂紋對應不同的超聲散射回波,表明在時刻 的超聲散射回波可以表征裂紋的不規(guī)則程度和復雜性,并且超聲散射回波與裂紋的 Hurst指數(shù)是一一對應的,所以,我們可以用這種方法來測量微裂紋的分形參數(shù)。
圖-2 不同分形參數(shù)微裂紋在時刻 的超聲散射回波
圖-3是在不同的測量距離時,三種不同材料內(nèi)部微裂紋的超聲散射回波。圖中分別給出了Hurst指數(shù)為0.2和0.8兩種情況下,三種不同材料的超聲散射回波的仿真結(jié)果。從圖中可以看出,當測量距離增加時,超聲回波快速下降,這與實際情況是相符的。同時可以看出,當測量距離一定時,超聲回波與Hurst指數(shù)是一一對應的。仿真結(jié)果表明,我們所建立的測量模型是正確可行的。所以,可以采用這種方法,在不需要對裂紋進行剖切的情況下,對不同材料內(nèi)部的微裂紋的分形參數(shù)進行測量,該方法與傳統(tǒng)的測量方法相比,更加方便。
圖-3 不同測量距離時材料內(nèi)部微裂紋的超聲散射回波
5 結(jié)論
論文提出了一種利用超聲波對材料內(nèi)部微裂紋分形參數(shù)(Hurst指數(shù))進行測量的新方法。論文首先采用一維分形布朗運動(FBM)來描述材料內(nèi)部的微裂紋,然后,建立了微裂紋超聲散射回波的數(shù)學模型,該模型建立起了時刻 的超聲回波信號與裂紋分形參數(shù)之間的關系,從理論上說明了這種測量方法的可行性。最后,對不同分形參數(shù)、不同材料和不同測量距離的情況分別進行了數(shù)值仿真,試驗結(jié)果也表明了這種方法的可行性。與傳統(tǒng)的裂紋分形參數(shù)測量方法相比,該方法具有高效和省時的特點。
評論