軍用開關(guān)電源可靠性設(shè)計研究
3 電磁兼容性 (EMC) 設(shè)計
開關(guān)電源因采用脈沖寬度調(diào)制 (PWM) 技術(shù),其脈沖波形呈矩形,上升沿與下降沿均包含大量的諧波成分,另外輸出整流管的反向恢復(fù)也會產(chǎn)生電磁干擾 (EMI) ,這是影響可靠性的不利因素,因而使電磁兼容性成為系統(tǒng)的重要問題。
如圖 1 所示,產(chǎn)生電磁干擾有三個必要條件:干擾源、傳輸介質(zhì)、敏感的接收單元, EMC 設(shè)計就是破壞這三個條件中的一個。
圖 1 形成電磁干擾的三個條件:
對于開關(guān)電源而言,主要是抑制干擾源,干擾源集中在開關(guān)電路與輸出整流電路。采用的技術(shù)包括濾波技術(shù)、布局與布線技術(shù)、屏蔽技術(shù)、接地技術(shù)、密封技術(shù)等。 EMI 按傳播途徑分為傳導(dǎo)干擾和輻射干擾。傳導(dǎo)噪聲的頻率范圍很寬,從 10kHz ~ 30MHz ,我們雖然知道產(chǎn)生干擾的原因,但從效率上來講,通過控制脈沖波形的上升與下降時間來解決未必是一個好辦法,解決辦法之一是加裝電源 EMI 濾波器、輸出濾波器及吸收電路,參見圖 2 。
電源 EMI 濾波器實際上是一種低通濾波器,它毫無衰減地把 50Hz 或 400Hz 交流電能傳遞給電子設(shè)備,卻大大衰減傳入的干擾信號,同時又能抑制設(shè)備本身產(chǎn)生的干擾信號,防止它竄入電網(wǎng),危害公網(wǎng)其它設(shè)備。選擇 EMI 濾波器是根據(jù)插入損耗的大小來選擇濾波器網(wǎng)絡(luò)結(jié)構(gòu)和元器件參數(shù),根據(jù)實際要求選擇額定電壓、額定電流、漏電流、絕緣電阻、溫度條件等參數(shù)。電源 EMI 濾波器最好安裝在機殼電源線進口的插座附近。抑制輸出噪聲的對策基本上按 10kHz ~ 150kHz 、 150kHz ~ 10MHz 、 10MHz 以上三個頻段來解決。 10kHz ~ 150kHz 范圍內(nèi)主要是常態(tài)噪聲,一般采用通用 LC 濾波器來解決。 150kHz ~ 10MHz 范圍內(nèi)主要是共模成分的噪聲,通常采用共模抑制濾波器來解決。共模扼流圈要采用導(dǎo)磁率高、頻率特性較佳的鐵氧體磁性材料,電感量在( 1 ~ 2 ) mH 、電容量在 3300pF ~ 4700pF 之間,如果控制低頻段的噪聲,可以適當加大 LC 的取值。在 10MHz 以上頻率段的對策是改進濾波器的外形。輸出整流二極管的反向恢復(fù)也會引起電磁干擾,這種情況可以采用 RC 吸收電路來抑制電流的上升率,通常 R 在 (2 ~ 20)Ω 之間, C 在 1000pF ~ 10nF 之間, C 應(yīng)選用高頻瓷介電容。
良好的布局和布線技術(shù)也是控制噪聲的一個重要手段。為減少噪聲的發(fā)生和防止由噪聲導(dǎo)致的誤動作,應(yīng)注意以下幾點:
① 盡量縮小由高頻脈沖電流所包圍的面積。
② 緩沖電路盡量貼近開關(guān)管和輸出整流二極管。
③ 脈沖電流流過的區(qū)域遠離輸入輸出端子,使噪聲源和出口分離。
④ 控制電路和功率電路分開,采用單點接地方式,大面積接地容易引起天線作用,所以建議不要采用大面積接地方式。
⑤ 必要時可以將輸出濾波電感安置在地回路上。
⑥ 采用多只低 ESR (等效串聯(lián)電阻)的電容并聯(lián)濾波。
⑦ 采用銅箔進行低感低阻配線。
⑧ 相鄰印制線之間不應(yīng)有過長的平行線,走線盡量避免平行,采用垂直交叉方式,線寬不要突變,也不要突然拐角。禁止環(huán)形走線。
⑨ 濾波器的輸入和輸出線必須分開。禁止將開關(guān)電源的輸入線和輸出線捆扎在一起。
對于輻射干擾主要應(yīng)用密封屏蔽技術(shù),在結(jié)構(gòu)上實行電磁封閉,要求外殼各部分之間具有良好的電磁接觸,以保證電磁的連續(xù)性。目前為減少重量大都采用鋁合金外殼,但鋁合金導(dǎo)磁性能差,因而外殼需要鍍一層鎳或噴涂導(dǎo)電漆,內(nèi)壁貼覆高導(dǎo)磁率的屏蔽材料。外殼永久連接處用導(dǎo)電膠粘牢或采用連續(xù)焊縫結(jié)構(gòu),需拆卸的可以用導(dǎo)電橡膠條壓緊來保證電磁連續(xù)性。導(dǎo)電材料要求導(dǎo)電性能高、有彈性、具有最小的寬厚比。
4 電源設(shè)備可靠性熱設(shè)計
除了電應(yīng)力之外,溫度是影響設(shè)備可靠性最重要的因素。電源設(shè)備內(nèi)部的溫升將導(dǎo)致元器件的失效,當溫度超過一定值時,失效率將呈指數(shù)規(guī)律增加,溫度超過極限值時將導(dǎo)致元器件失效。國外統(tǒng)計資料表明電子元器件溫度每升高 2℃ ,可靠性下降 10 %;溫升 50℃ 時的壽命只有溫升 25℃ 時的 1/6 。需要在技術(shù)上采取措施限制機箱及元器件的溫升,這就是熱設(shè)計。熱設(shè)計的原則,一是減少發(fā)熱量,即選用更優(yōu)的控制方式和技術(shù),如移相控制技術(shù)、同步整流技術(shù)等,另外就是選用低功耗的器件,減少發(fā)熱器件的數(shù)目,加大加粗印制線的寬度,提高電源的效率。二是加強散熱,即利用傳導(dǎo)、輻射、對流技術(shù)將熱量轉(zhuǎn)移,這包括采用散熱器、風冷 ( 自然對流和強迫風冷 ) 、液冷 ( 水、油 ) 、熱電致冷、熱管等方法。
強迫風冷的散熱量比自然冷卻大十倍以上,但是要增加風機、風機電源、聯(lián)鎖裝置等,這不僅使設(shè)備的成本和復(fù)雜性增加,而且使系統(tǒng)的可靠性下降,另外還增加了噪聲和振動,因而在一般情況下應(yīng)盡量采用自然冷卻,而不采用風冷、液冷之類的冷卻方式。在元器件布局時,應(yīng)將發(fā)熱器件安放在下風位置或在印制板的上部,散熱器采用氧化發(fā)黑工藝處理,以提高輻射率,不允許用黑漆涂覆。噴涂三防漆后會影響散熱效果,需要適當加大裕量。散熱器安裝器件的平面要求光滑平整,一般在接觸面涂上硅脂以提高導(dǎo)熱率。變壓器和電感線圈應(yīng)選用較粗的導(dǎo)線來抑制溫升。
5 安全性設(shè)計
對于電源而言,安全性歷來被確定為最重要的性能之一,不安全的產(chǎn)品不但不能完成規(guī)定的功能,而且還有可能發(fā)生嚴重事故,造成機毀人亡的巨大損失。為保證產(chǎn)品具有相當高的安全性,必須進行安全性設(shè)計。電源產(chǎn)品安全性設(shè)計的內(nèi)容主要是防止觸電和燒傷。
對于商用設(shè)備市場,具有代表性的安全標準有 UL 、 CSA 、 VDE 等,內(nèi)容因用途而異,容許泄漏電流在 05mA ~ 5mA 之間,我國軍用標準 GJB1412 規(guī)定的泄漏電流小于 5mA 。電源設(shè)備對地泄漏電流的大小取決于 EMI 濾波器電容 Cy 的容量,如圖 2 所示。從 EMI 濾波器角度出發(fā)電容 Cy 的容量越大越好,但從安全性角度出發(fā)電容 Cy 的容量越小越好,電容 Cy 的容量根據(jù)安全標準來決定。若電容 Cx 的安全性能欠佳,電網(wǎng)瞬態(tài)尖峰出現(xiàn)時可能被擊穿,它的擊穿雖然不危及人身安全,但會使濾波器喪失濾波功能。為了防止誤觸電,插頭座原則上產(chǎn)品端 ( 非電源端 ) 為針,電網(wǎng)端 ( 電源端 ) 為孔;電源設(shè)備之輸入端為針,輸出端為孔。
為了防止燒傷,對于可能與人體接觸的暴露部件 ( 散熱器、機殼等 ) ,當環(huán)境溫度為 25℃ 時,其最高溫度不應(yīng)超過 60℃ ,面板和手動調(diào)節(jié)部分的最高溫度不超過 50℃ 。
6 三防設(shè)計
三防設(shè)計是指防潮設(shè)計、防鹽霧設(shè)計和防霉菌設(shè)計。
在設(shè)計時,對于密封有要求的元器件應(yīng)采取密封措施;對于不可修復(fù)的組合裝置可采用環(huán)氧樹脂灌封;所用元器件、原材料的吸濕度應(yīng)較小,不得使用含有棉、麻、絲等易霉制品;對密封機箱、機柜應(yīng)設(shè)置防護網(wǎng),以防昆蟲和嚙齒動物進入;直接暴露在大氣中裝置的外頂部不應(yīng)采用凹陷結(jié)構(gòu),避免積水導(dǎo)致腐蝕;可以選用耐蝕材料,再通過鍍、涂或化學(xué)處理使電子設(shè)備及其零部件的表面覆蓋一層金屬或非金屬保護膜,隔離周圍介質(zhì);在結(jié)構(gòu)上采用密封或半密封形式來隔絕外部不利環(huán)境;對印制板及組件表面涂覆專用的三防清漆可以有效地避免導(dǎo)線之間的電暈、擊穿,提高電源的可靠性;電感、變壓器應(yīng)進行浸漆、端封,以防潮氣進入引發(fā)短路事故。
7 結(jié)語
以上建議只適用于軍用電源,對于商用和工業(yè)用產(chǎn)品可以在某些方面作出不同的選擇??傊娫丛O(shè)備可靠性的高低,不僅與電氣設(shè)計,而且同元器件、結(jié)構(gòu)、裝配、工藝、加工質(zhì)量等方面有關(guān)??煽啃允且栽O(shè)計為基礎(chǔ),在實際工程應(yīng)用上,還應(yīng)通過各種試驗取得反饋數(shù)據(jù)來完善設(shè)計,進一步提高電源的可靠性。
評論