關(guān)于常用通信接口技術(shù)的探討
對(duì)于第一種接口,位于同一塊電路板的網(wǎng)絡(luò)處理器芯片組和交換架構(gòu)間的接口可用CSIXLevel1接口實(shí)現(xiàn)。該接口采用CSIXLevel1包格式,包括為交換架構(gòu)提供路由指令的報(bào)頭,以及用于誤差檢測(cè)及糾正的報(bào)尾,還包括數(shù)據(jù)載荷本身。控制CSIX規(guī)范的網(wǎng)絡(luò)處理器論壇將進(jìn)一步完善該規(guī)范,增加從一個(gè)NPU芯片組通過(guò)交換芯片傳至另一個(gè)NPU芯片的額外指令。這將成為CSIXLevel2規(guī)范的最主要推進(jìn)力。該規(guī)范還定義了每個(gè)方向中使用至多128個(gè)HSTL一類(lèi)I/O的電氣互連,其源同步時(shí)鐘頻率高達(dá)250MHz。CSIXLevel1協(xié)議與CSIXLevel1電氣規(guī)范無(wú)關(guān),無(wú)論NPU芯片組和交換架構(gòu)間的經(jīng)由背板的通信采用何種電氣標(biāo)準(zhǔn),仍可使用CSIXLevel1協(xié)議。
對(duì)于第二種接口,即NPU芯片組與交換架構(gòu)間需要在通過(guò)背板通信,仍然可以使用CSIXLevel1協(xié)議,但這種電氣接口并不合適。信號(hào)將穿過(guò)連接器,從端口卡到達(dá)系統(tǒng)背板,經(jīng)過(guò)數(shù)英寸到達(dá)另一個(gè)連接器,然后進(jìn)入交換卡。有諸多原因使得越來(lái)越多的設(shè)計(jì)者選擇具有嵌入式時(shí)鐘的串行接口來(lái)實(shí)現(xiàn)這些連接。首先,串行接口可最大限度地減少電路板與背板連接器的引腳數(shù),從而可減小插拔力及對(duì)操作系統(tǒng)中電路板的可能損害。其二,在信號(hào)中嵌入時(shí)鐘和數(shù)據(jù)的串行接口可完全避免時(shí)鐘偏移問(wèn)題。時(shí)鐘偏移是PCB中數(shù)英寸長(zhǎng)的并口所面臨的主要問(wèn)題。其三,串行信號(hào)的背板設(shè)計(jì)者還可提高傳輸速率,因?yàn)椴淮嬖跁r(shí)鐘偏移,也就沒(méi)有對(duì)未來(lái)性能的限制。
被成功用作串行背板標(biāo)準(zhǔn)的接口是XAUI,它是為10千兆以太網(wǎng)開(kāi)發(fā)的。該規(guī)范適用于通道排列電路,無(wú)論四通道軌線(xiàn)長(zhǎng)度是否匹配,符合XAUI的器件均能接收無(wú)誤差數(shù)據(jù)。該接口使用差分電流模式邏輯信令,它還采用交流耦合模式,允許電路板間的參考電壓不同。
控制板接口
目前本文所提到的接口都用于數(shù)據(jù)通道,即數(shù)據(jù)從光纖傳輸介質(zhì)到達(dá)交換架構(gòu),然后返回光纖通道。但由于通信系統(tǒng)具有復(fù)雜的控制板,負(fù)責(zé)統(tǒng)計(jì)數(shù)據(jù)收集、流量監(jiān)視、系統(tǒng)管理及維護(hù)等功能,因此需要強(qiáng)大的處理能力運(yùn)行軟件以實(shí)現(xiàn)這些功能。這些構(gòu)建控制板處理器的接口正如設(shè)想的那樣,與數(shù)據(jù)通道的接口明顯不同。數(shù)據(jù)通道接口主要用于在兩個(gè)器件間傳輸數(shù)據(jù)(即點(diǎn)對(duì)點(diǎn)鏈接),控制板接口則是與具有不同元件的一個(gè)或多個(gè)微處理器相連接:背板收發(fā)器、DSP、數(shù)據(jù)板器件的控制端口等。實(shí)現(xiàn)這些靈活的互連需要完全不同類(lèi)型的接口。
這類(lèi)系統(tǒng)過(guò)去都是圍繞多點(diǎn)復(fù)接的中心總線(xiàn)構(gòu)建的。實(shí)現(xiàn)PCI總線(xiàn)架構(gòu)的32位/33MHz及最近采用的64位/66MHz標(biāo)準(zhǔn)已經(jīng)用于通信系統(tǒng)中。最近64位/133MHzPCI-X更用于高端服務(wù)器。但是,由于數(shù)據(jù)板處理的帶寬已經(jīng)增加,控制板的帶寬也要提高。很多設(shè)計(jì)者發(fā)現(xiàn)共享總線(xiàn)帶寬不足以滿(mǎn)足多個(gè)器件的需求。因此,出現(xiàn)一類(lèi)新型接口。
這類(lèi)新接口采用點(diǎn)至點(diǎn)連接,用源同步時(shí)鐘減少時(shí)鐘偏移。差分信令可提高數(shù)據(jù)傳輸率,減少交換噪聲和功耗。但真正的創(chuàng)新在于使用交換架構(gòu)或通道器件,實(shí)現(xiàn)控制應(yīng)用中所需的多點(diǎn)互連。
已獲得Motorola及RapidIO貿(mào)易聯(lián)合會(huì)支持的RapidIO是使用交換架構(gòu)實(shí)現(xiàn)點(diǎn)至點(diǎn)鏈接的接口。
該接口的傳輸層規(guī)定數(shù)據(jù)如何封裝在包中,每個(gè)包都具有數(shù)據(jù)源和目標(biāo)信息,交換架構(gòu)將數(shù)據(jù)包送往合適的?用250MHz~1.0GHz雙數(shù)據(jù)速率。此外,串行RapidIO可使用具有8b/10b編碼的1通道或4通道數(shù)據(jù),嵌入時(shí)鐘達(dá)3.125Gb/s,它還具有CML差分信令。
AMD及HyperTransport聯(lián)盟開(kāi)發(fā)的HyperTransport使用通道器件實(shí)現(xiàn)點(diǎn)至點(diǎn)鏈接。數(shù)據(jù)以包的形式傳輸,每個(gè)包均包括數(shù)據(jù)源和目標(biāo)信息。接收數(shù)據(jù)的通道器件按照數(shù)據(jù)包報(bào)頭確定是將數(shù)據(jù)傳至鏈中的下一個(gè)器件,還是直接處理數(shù)據(jù)。目前的HyperTransport規(guī)范需要寬度為2~16位的并行數(shù)據(jù)。未來(lái)規(guī)范可支持更高速率。PMC-Sierra和BroADCom已經(jīng)為HyperTransport通信產(chǎn)品推出基于MIPS的處理器。
PCI-SIG已經(jīng)推出高速率PCI-X。它們使用與最初PCI-X相同的64位總線(xiàn)帶寬,可支持雙數(shù)據(jù)速率和四倍數(shù)據(jù)速率。PCI-X533是速率最快的版本,最大總計(jì)帶寬達(dá)34.1Gb/s。
PCI-X的傳輸通訊協(xié)議、訊號(hào)和標(biāo)準(zhǔn)的接頭格式都與PCI一并兼容,可以使3.3V的32位PCI適配卡可以用在PCI-X擴(kuò)充槽上。當(dāng)然如果你愿意,也可以將64位PCI-X適配卡接在32位PCI擴(kuò)充槽上,不過(guò),頻寬速度將會(huì)大減
評(píng)論