一文看懂TSV技術(shù)
從HBM存儲(chǔ)器到3D NAND芯片,再到CoWoS,硬件市場(chǎng)上有許多芯片是用英文稱(chēng)為T(mén)SV構(gòu)建的,TSV是首字母縮寫(xiě),意為“通過(guò)硅通孔”并翻譯為via硅的事實(shí),它們垂直地穿過(guò)的芯片和允許在它們之間垂直互通。在本文中,我們將告訴您它們是什么,它們?nèi)绾喂ぷ饕约八鼈兊挠猛尽?/span>
在2000年的第一個(gè)月,Santa Clara University的Sergey Savastiou教授在Solid State Technology期刊上發(fā)表了一篇名叫《Moore’s Law – the Z dimension》的文章。這篇文章最后一章的標(biāo)題是Through-Silicon Vias,這是 Through-Silicon Via 這個(gè)名詞首次在世界上亮相。這篇文章發(fā)表的時(shí)間點(diǎn)似乎也預(yù)示著在新的千禧年里,TSV注定將迎來(lái)它不凡的表演。
TSV示意圖
TSV,是英文Through-Silicon Via的縮寫(xiě),即是穿過(guò)硅基板的垂直電互連。
如果說(shuō)Wire bonding(引線(xiàn)鍵合)和Flip-Chip(倒裝焊)的Bumping(凸點(diǎn))提供了芯片對(duì)外部的電互連,RDL(再布線(xiàn))提供了芯片內(nèi)部水平方向的電互連,那么TSV則提供了硅片內(nèi)部垂直方向的電互連。 作為唯一的垂直電互連技術(shù),TSV是半導(dǎo)體先進(jìn)封裝最核心的技術(shù)之一。
90年代中期,半導(dǎo)體行業(yè)發(fā)生一件大事: IBM用銅電鍍大馬士革工藝全面替代的濺射鋁作為集成電路中晶體管互連。這樣電鍍銅在半導(dǎo)體行業(yè)便開(kāi)始成為標(biāo)準(zhǔn)工藝,這讓電鍍銅用于TSV的微孔金屬化填充更加順理成章。至此, 現(xiàn)代TSV的兩項(xiàng)核心技術(shù):深硅刻蝕和電鍍都出現(xiàn)了。在硬件世界中,經(jīng)常用與速度有關(guān)的術(shù)語(yǔ)來(lái)談?wù)撍?,即是否是?nèi)存的帶寬,處理器的時(shí)鐘周期,處理器每秒執(zhí)行某種類(lèi)型的計(jì)算的次數(shù)等等,但是我們很少問(wèn)自己這些芯片如何相互通信以及這是否重要。
在本文中,我們將討論一種稱(chēng)為T(mén)SV的技術(shù),該技術(shù)可用于相互通信的芯片。
什么是硅或TSV通路?
如果我們看大多數(shù)主板,可以看到兩件事:第一,芯片之間的大多數(shù)連接都是水平的,這意味著板上發(fā)送芯片間信號(hào)的路徑是水平通信的。
PCB
然后是CPU的情況,這些CPU放置在我們稱(chēng)為插座的插入器的頂部,并且處理器在這些插入器上垂直連接。
SocketCPU
但是通常,在99%的時(shí)間中,我們觀察到通常沒(méi)有相互垂直連接的芯片,盡管事實(shí)上芯片和處理器的設(shè)計(jì)朝著這個(gè)方向發(fā)展,并且市場(chǎng)上已經(jīng)有這種類(lèi)型的示例。但是,如何使兩個(gè)或更多芯片垂直互連?
TSV
好吧,正是通過(guò)所謂的硅通道來(lái)完成的,硅通道垂直穿過(guò)組成堆棧的同一芯片的不同芯片或不同層,這就是為什么它們被稱(chēng)為“通過(guò)”硅通道,因?yàn)樗鼈儗?shí)際上是通過(guò)的。
使用TSV的應(yīng)用和優(yōu)勢(shì)
TSV的應(yīng)用之一是,它允許將由不同部分組成的復(fù)雜處理器分離在幾個(gè)不同的芯片上,并具有以下附加優(yōu)點(diǎn):垂直連接允許更多數(shù)量的連接,這有助于實(shí)現(xiàn)更大的帶寬,而無(wú)需額外的帶寬。很高的時(shí)鐘頻率會(huì)增加數(shù)據(jù)傳輸期間的功耗。
例如,在將來(lái),我們將看到CPU和GPU的最后一級(jí)緩存將不在芯片上,它們具有相同的帶寬,但存儲(chǔ)容量卻是原來(lái)的幾倍,這將大大提高性能。我們也有使用FSV來(lái)通信Lakefield SoC的兩個(gè)部分的Intel Foveros示例,即帶有系統(tǒng)I / O所在的基本芯片的計(jì)算芯片。
LakefieldFoveros
將處理器劃分為不同部分的原因是,隨著芯片的變大,電路中錯(cuò)誤的可能性越來(lái)越大,因此沒(méi)有故障的優(yōu)質(zhì)芯片的數(shù)量會(huì)增加。他們可以使用的更少,而那些做得好的人必須支付失敗者的費(fèi)用;這意味著從理論上減小芯片的尺寸會(huì)降低總體成本,盡管稍后我們將看到情況并非完全如此。
HBM-vs-GDDR
第二個(gè)應(yīng)用程序與占用的空間有關(guān);能夠垂直堆疊多個(gè)芯片的事實(shí)大大減少了它們占用的面積,因?yàn)樗鼈儾粫?huì)散布在板上,其中最著名的示例是將HBM內(nèi)存用作某些圖形處理器的VRAM,但是我們還有其他示例,例如三星的V-NAND存儲(chǔ)器,將多個(gè)NAND閃存芯片彼此堆疊。
3DNAND
其他鮮為人知的選擇是邏輯和內(nèi)存的組合,其中內(nèi)存位于處理器的頂部,最著名的示例是寬I / O內(nèi)存,這是幾年前出現(xiàn)在智能手機(jī)中的一種內(nèi)存,包括SoC頂部的存儲(chǔ)器通過(guò)硅互連。
來(lái)源:半導(dǎo)體風(fēng)向標(biāo)
*博客內(nèi)容為網(wǎng)友個(gè)人發(fā)布,僅代表博主個(gè)人觀點(diǎn),如有侵權(quán)請(qǐng)聯(lián)系工作人員刪除。