DSP實現(xiàn)仿生機器蟹多關(guān)節(jié)控制系統(tǒng)
為了實時獲得軀體相對于大地坐標系的位置和姿態(tài)信息,步行機器人必須通過大量的外部傳感器獲得諸如傾角、離地高度等信息。在機器蟹的步行足端部安裝了力傳感器,利用它檢測足端與物體(或地面)的接觸力大小,來判斷步行足是與外界物體發(fā)生碰撞還是接觸地面。通過設(shè)置碰撞力信號的閾值來判斷步行足是可以克服阻力按規(guī)劃路徑繼續(xù)運動,還是改變運動方式避開障礙,或從擺動相轉(zhuǎn)入支撐相。FSR(Force SensingResistors)是一種聚合體薄膜裝置,其電阻值大小與其活性表面所受正壓力大小成正比,這種力傳感器對力的敏感程度非常高。機器蟹足端FSR檢測電路如圖5所示。無作用力時,FSR阻值Rs約為50MΩ,
晶體管導(dǎo)通,Vout輸出為低電平,接近于0V;當表面受力時,阻值Rs隨力的增加而減小,當Rs值滿足晶體管可靠截止條件時,Vout輸出高電平。要使晶體管截止?必須滿足以下條件: (Vcc%26;#183;Rs)/(R1+Rs)<Vbe,即Rs<(Vbe%26;#183;R1)/(Vcc-Vbe)
?。?單步行足控制系統(tǒng)的軟件設(shè)計
在本文設(shè)計的機器蟹控制器中,采用分時集中方式和多CPU的結(jié)構(gòu)。步行足控制器采用分時集中方式,由一個CPU對3條步行足的9個關(guān)節(jié)進行控制,CPU可對各關(guān)節(jié)的反饋控制策略進行協(xié)調(diào)控制,完全由軟件確立各關(guān)節(jié)之間的耦合關(guān)系。而整個機器蟹的全局控制器結(jié)構(gòu)為多CPU結(jié)構(gòu),由3個步行足控制器(即3個CPU控制單元)并聯(lián)成伺服控制層,并由一個中央控制CPU協(xié)調(diào)控制。機器蟹步行足控制系統(tǒng)的單關(guān)節(jié)控制過程如圖6所示。由PC機(上位機)將每一個動作任務(wù)分解為各關(guān)節(jié)轉(zhuǎn)角,并每隔一個插補時間T1執(zhí)行一次上下位機指令,將下一個T1時間內(nèi)各指關(guān)節(jié)的目標轉(zhuǎn)角指令值發(fā)送給DSP控制器(下位機)。DSP控制器將插補時間內(nèi)的轉(zhuǎn)角按可控精度進行周期為T2的插補細分,細分后所得任務(wù)為各個關(guān)節(jié)電機控制中斷程序的實際目標指令,并在插補周期時間內(nèi)實現(xiàn)電機轉(zhuǎn)角位置伺服控制,從而完成步行足的運動控制。除此之外,控制系統(tǒng)軟件還包括步行足軌跡規(guī)劃運算、系統(tǒng)自檢和初始化、故障判斷、程序終止、力/位置信號采集處理等功能模塊。
本文以仿生機器蟹為設(shè)計對象,提出了基于DSP的機器蟹多層多目標遞階控制系統(tǒng)方案,并對單步行足的軟、硬件設(shè)計做了詳細的闡述,為進一步實現(xiàn)自主式的仿生步行機構(gòu)奠定了基礎(chǔ)。
評論