如何降低D類音頻應(yīng)用中的電磁干擾
隨著便攜式電池供電設(shè)備的工作時間越來越長,D類放大器憑借先天的效率優(yōu)勢,受到重視的程度與日俱增。如今,大部分D類系統(tǒng)的工作效率都在80%以上,以往開發(fā)人員必須犧牲音頻性能和增加電路板的空間和系統(tǒng)成本,才能提高效率。所幸,最新的D類技術(shù)已克服了這些架構(gòu)的缺點,同時簡化了系統(tǒng)設(shè)計,降低了解決方案的成本。
本文引用地址:http://m.butianyuan.cn/article/166962.htm對于D類放大器來說,常見的問題包括:濾波器的大小、電磁干擾(EMI)、射頻干擾(RFI)和不良的總諧波失真+噪聲(THD+N)。新架構(gòu)采用揚聲器本身的電感特性,從PWM方波輸出中抽取音頻成份,從而省去了用于音頻的輸出濾波器,但移除濾波器后的拓撲又會導(dǎo)致更多的電磁干擾。最新開發(fā)出的器件在不犧牲效率的前提下,可將EMI降至最低并改善THD+N的性能。
EMI對于設(shè)計人員來說很重要,它可干擾系統(tǒng)內(nèi)的IC器件和其他的電子設(shè)備。此外,工程人員還需面對一項艱巨的挑戰(zhàn),即要符合有關(guān)EMI限制標(biāo)準(zhǔn),例如FCC、CE、Mil-Std-461和汽車系統(tǒng)專用標(biāo)準(zhǔn)等。第一個由半導(dǎo)體供應(yīng)商推行的EMI抑制功能是擴展頻譜調(diào)制。擴展頻譜調(diào)制與傳統(tǒng)的脈沖寬度調(diào)制(PWM)不同,其輸出橋路的開關(guān)頻率只會在中心頻率附近的頻帶內(nèi)變化。雖然每個器件有不同的中心頻率、頻率擴展和頻率變化方法,但只要頻率的變化是隨機的,則峰值輻射能量便可被降低。這是由于電磁能量傾向散布在較寬闊的頻帶內(nèi),所以總高頻能量會如同一個固定頻率器件一樣保持不變,但在頻帶內(nèi)任何一點頻率上的噪聲均可被降低。圖1比較了一個固定頻率器件和一個擴展頻譜器件的近場EMI測量結(jié)果。正如圖中的紅色線表示,峰值能量被減少。如果實現(xiàn)的方法正確,那擴展頻譜可以作為一個非常有效的方案,因為它不會對效率和THD造成任何不良的影響。這種技術(shù)現(xiàn)已應(yīng)用在例如LM4675、LM48410和LM48520之類的器件上。
圖1. D類系統(tǒng)的 近場EMI測量結(jié)果。從紅色的虛線可看出左邊的固定頻率時鐘方案和右邊的擴展頻譜調(diào)制之間的分別。
為了進一步降低器件的EMI輻射,半導(dǎo)體制造商推行了邊沿速率控制(ERC)。D類輸出的高頻能量被包含在方波輸出的邊沿。輸出的上升和下降時間越快,則邊沿所包含的高頻能量就越多。因此,假如輸出過渡時間可以被減少,那么便可繼而削減由系統(tǒng)發(fā)出來的高頻能量。
不過,減少過渡時間也可能對D類放大器的性能帶來不好的影響。隨著花在狀態(tài)之間有效區(qū)域的時間越長,輸出器件便會耗散更多的功率,從而使效率下降。此外,更短的上升和下降時間也會使PWM信號偏離完美的方波,導(dǎo)致在重生的音頻信號中產(chǎn)生誤差并增加THD+N。
圖2. LM48310的EMI測試結(jié)果符合FCC B級限制水平。
雖然邊沿速率控制有可能對D類放大器的性能構(gòu)成威脅,但它在降低EMI上的表現(xiàn)卻使設(shè)計人員欲罷不能,從而令ERC技術(shù)不斷改進。只要實現(xiàn)的方法正確,那便可將效率損失和增加THD+N的不良作用減到最低。其中一個很好的例子是美國國家半導(dǎo)體(NSC, National semiconductor corporation)的LM48310(單聲道)和LM48411(多聲道)D類放大器。
以上兩款器件均采用了美國國家半導(dǎo)體專利的增強型放射抑制(E2S)系統(tǒng)。該E2S系統(tǒng)可通過減緩部分邊沿輸出過渡時間來改善效率。通過此方法,不單EMI可被降至最低,甚至連功耗都可降低至非ERC的D類放大器水平。至于由ERC引致的PWM音頻信號誤差則可通過內(nèi)部反饋環(huán)路進行修正,以減少THD+N并改善音頻品質(zhì)。
圖3. 沒有邊沿速率控制的擴展頻譜D類放大器。器件在EMI測試中,在沒有使用任何濾波器的情況下驅(qū)動20英寸長的揚聲器電纜,其結(jié)果符合FCC B級的EMI限制。
評論